added confluence to Lambda

This commit is contained in:
wadler 2018-07-02 18:42:45 -03:00
parent 6323d938b1
commit 83975bc8e1
4 changed files with 340 additions and 242 deletions

View file

@ -0,0 +1,47 @@
Three possible formulations of `μ`
μ N —→ N [ μ N ]
(μ N) · V —→ N [ μ N , V ]
(μ (ƛ N)) · V —→ N [ μ (ƛ N) , V ]
The first is odd in that we substitute for `f` a term that is not a value.
One advantage of the first is that it also works perfectly well on other types.
For instance,
case (μ x → suc x) [zero→ zero | suc x → x]
returns (μ x → suc x).
The second has two values of function type, both lambda abstractions and fixpoints.
What if the body of μ must first reduce to a value? Two cases.
Value is a lambda.
(μ f → N) · V
—→ (μ f → ƛ x → N) · V
—→ (ƛ x → N) [ f := μ f → ƛ x → N ] · V
—→ (ƛ x → N [ f := μ f → ƛ x → N ]) · V
—→ N [ f := μ f → ƛ x → N , x := V ]
Value is itself a mu.
(μ f → μ g → N) · V
—→ (μ f → μ g → N) · V
—→ (μ f → μ g → λ x → N″) · V
—→ (μ g → λ x → N″) [ f := μ f → μ g → λ x → N″ ] · V
—→ (μ g → λ x → N″ [ f := μ f → μ g → λ x → N″ ]) · V
—→ (λ x → N″ [ f := μ f → μ g → λ x → N″ ])
[ g := μ g → λ x → N″ [ f := μ f → μ g → λ x → N″ ] · V
—→ (λ x → N″ [ f := μ f → μ g → λ x → N″ ]
[ g := μ g → λ x → N″ [ f := μ f → μ g → λ x → N″ ]) · V
—→ N″ [ f := μ f → μ g → λ x → N″ ]
[ g := μ g → λ x → N″ [ f := μ f → μ g → λ x → N″ ]
[ x := V ]
This is something you would *never* want to do, because f and g are
bound to the same function. Better to avoid it by building functions
into the syntax, I expect.

View file

@ -538,7 +538,8 @@ from variables in one context to variables in another,
extension yields a map from the first context extended to the
second context similarly extended. It looks exactly like the
old extension lemma, but with all names and terms dropped.
\begin{code} ext : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ∋ A)
\begin{code}
ext : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ∋ A)
----------------------------------
→ (∀ {A B} → Γ , B ∋ A → Δ , B ∋ A)
ext ρ Z = Z
@ -784,8 +785,9 @@ define values and reduction.
### Value
The definition of value is much
The definition of value is much as before, save that the
added types incorporate the same information found in the
Canonical Forms lemma.
\begin{code}
data Value : ∀ {Γ A} → Γ ⊢ A → Set where
@ -803,222 +805,221 @@ data Value : ∀ {Γ A} → Γ ⊢ A → Set where
→ Value (`suc V)
\end{code}
Here `zero` requires an implicit parameter to aid inference (much in the same way that `[]` did in [Lists]({{ site.baseurl }}{% link out/plta/Lists.md %})).
Here `zero` requires an implicit parameter to aid inference,
much in the same way that `[]` did in
[Lists]({{ site.baseurl }}{% link out/plta/Lists.md %})).
### Reduction step
\begin{code}
infix 2 _↦_
The reduction rules are the same as those given earlier, save
that for each term we must specify its types. As before, we
have compatibility rules that reduce a part of a term,
labelled with `ξ`, and rules that simplify a constructor
combined with a destructor, labelled with `β`.
data _↦_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where
\begin{code}
infix 2 _—→_
data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where
ξ-·₁ : ∀ {Γ A B} {L L : Γ ⊢ A ⇒ B} {M : Γ ⊢ A}
→ L ↦ L
→ L —→ L
-----------------
→ L · M L · M
→ L · M —→ L · M
ξ-·₂ : ∀ {Γ A B} {V : Γ ⊢ A ⇒ B} {M M : Γ ⊢ A}
→ Value V
→ M M
→ M —→ M
--------------
→ V · M V · M
→ V · M —→ V · M
β-ƛ : ∀ {Γ A B} {N : Γ , A ⊢ B} {W : Γ ⊢ A}
→ Value W
-------------------
→ (ƛ N) · W N [ W ]
→ (ƛ N) · W —→ N [ W ]
ξ-suc : ∀ {Γ} {M M : Γ ⊢ `}
→ M M
→ M —→ M
----------------
→ `suc M `suc M
→ `suc M —→ `suc M
ξ-case : ∀ {Γ A} {L L : Γ ⊢ `} {M : Γ ⊢ A} {N : Γ , ` ⊢ A}
→ L L
→ L —→ L
--------------------------
→ `case L M N `case L M N
→ `case L M N —→ `case L M N
β-zero : ∀ {Γ A} {M : Γ ⊢ A} {N : Γ , ` ⊢ A}
-------------------
→ `case `zero M N M
→ `case `zero M N —→ M
β-suc : ∀ {Γ A} {V : Γ ⊢ `} {M : Γ ⊢ A} {N : Γ , ` ⊢ A}
→ Value V
----------------------------
→ `case (`suc V) M N N [ V ]
-----------------------------
→ `case (`suc V) M N —→ N [ V ]
β-μ : ∀ {Γ A} {N : Γ , A ⊢ A}
---------------
→ μ N N [ μ N ]
→ μ N —→ N [ μ N ]
\end{code}
The definition states that `M —→ N` can only hold of terms `M`
and `N` which _both_ have type `Γ ⊢ A` for some context `Γ`
and type `A`. In other words, it is _built-in_ to our
definition that reduction preserves types. There is no
separate Preservation theorem to prove. The Agda type-checker
validates that each term preserves types. In the case of `β`
rules, preservation depends on the fact that substitution
preserves types, which we previously is built-in to our
definition of substitution.
Two possible formulations of `μ`
μ N ↦ N [ μ N ]
(μ N) · V ↦ N [ μ N , V ]
(μ (ƛ N)) · V ↦ N [ μ (ƛ N) , V ]
The first is odd in that we substitute for `f` a term that is not a value.
The second has two values of function type, both lambda abstractions and fixpoints.
What if the body of μ must first reduce to a value? Two cases.
Value is a lambda.
(μ f → N) · V
↦ (μ f → ƛ x → N) · V
↦ (ƛ x → N) [ f := μ f → ƛ x → N ] · V
↦ (ƛ x → N [ f := μ f → ƛ x → N ]) · V
↦ N [ f := μ f → ƛ x → N , x := V ]
Value is itself a mu.
(μ f → μ g → N) · V
↦ (μ f → μ g → N) · V
↦ (μ f → μ g → λ x → N″) · V
↦ (μ g → λ x → N″) [ f := μ f → μ g → λ x → N″ ] · V
↦ (μ g → λ x → N″ [ f := μ f → μ g → λ x → N″ ]) · V
↦ (λ x → N″ [ f := μ f → μ g → λ x → N″ ])
[ g := μ g → λ x → N″ [ f := μ f → μ g → λ x → N″ ] · V
↦ (λ x → N″ [ f := μ f → μ g → λ x → N″ ]
[ g := μ g → λ x → N″ [ f := μ f → μ g → λ x → N″ ]) · V
↦ N″ [ f := μ f → μ g → λ x → N″ ]
[ g := μ g → λ x → N″ [ f := μ f → μ g → λ x → N″ ]
[ x := V ]
This is something you would *never* want to do, because f and g are
bound to the same function. Better to avoid it by building functions
into the syntax, I expect.
## Reflexive and transitive closure
The reflexive and transitive closure is exactly as before.
We simply cut-and-paste the previous definition.
\begin{code}
infix 2 _↠_
infix 2 _—↠_
infix 1 begin_
infixr 2 _⟨_⟩_
infixr 2 _—→⟨_⟩_
infix 3 _∎
data _↠_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where
data _—↠_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where
_∎ : ∀ {Γ A} (M : Γ ⊢ A)
--------
→ M ↠ M
→ M —↠ M
_⟨_⟩_ : ∀ {Γ A} (L : Γ ⊢ A) {M N : Γ ⊢ A}
→ L M
→ M ↠ N
_—→⟨_⟩_ : ∀ {Γ A} (L : Γ ⊢ A) {M N : Γ ⊢ A}
→ L —→ M
→ M —↠ N
---------
→ L ↠ N
→ L —↠ N
begin_ : ∀ {Γ} {A} {M N : Γ ⊢ A} → (M ↠ N) → (M ↠ N)
begin M↠N = M↠N
begin_ : ∀ {Γ} {A} {M N : Γ ⊢ A} → (M —↠ N) → (M —↠ N)
begin M—↠N = M—↠N
\end{code}
## Example reduction sequences
### Examples
We reiterate each of our previous examples. First, the Church
numeral two applied to the successor function and zero yields
the natural number two.
\begin{code}
id : ∀ (A : Type) → ∅ ⊢ A ⇒ A
id A = ƛ ` Z
_ : ∀ {A} → id (A ⇒ A) · id A ↠ id A
_ : twoᶜ · sucᶜ · `zero {∅} —↠ `suc `suc `zero
_ =
begin
(ƛ ` Z) · (ƛ ` Z)
↦⟨ β-ƛ V-ƛ ⟩
ƛ ` Z
twoᶜ · sucᶜ · `zero
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
(ƛ (sucᶜ · (sucᶜ · # 0))) · `zero
—→⟨ β-ƛ V-zero ⟩
sucᶜ · (sucᶜ · `zero)
—→⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
sucᶜ · `suc `zero
—→⟨ β-ƛ (V-suc V-zero) ⟩
`suc (`suc `zero)
\end{code}
As before, we need to supply an explicit context to `` `zero ``.
_ : plus {∅} · two · two ↠ `suc `suc `suc `suc `zero
Next, a sample reduction demonstrating that two plus two is four.
\begin{code}
_ : plus {∅} · two · two —↠ `suc `suc `suc `suc `zero
_ =
plus · two · two
↦⟨ ξ-·₁ (ξ-·₁ β-μ) ⟩
—→⟨ ξ-·₁ (ξ-·₁ β-μ) ⟩
(ƛ ƛ `case (` S Z) (` Z) (`suc (plus · ` Z · ` S Z))) · two · two
⟨ ξ-·₁ (β-ƛ (V-suc (V-suc V-zero))) ⟩
—→⟨ ξ-·₁ (β-ƛ (V-suc (V-suc V-zero))) ⟩
(ƛ `case two (` Z) (`suc (plus · ` Z · ` S Z))) · two
⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
—→⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
`case two two (`suc (plus · ` Z · two))
⟨ β-suc (V-suc V-zero) ⟩
—→⟨ β-suc (V-suc V-zero) ⟩
`suc (plus · `suc `zero · two)
⟨ ξ-suc (ξ-·₁ (ξ-·₁ β-μ)) ⟩
—→⟨ ξ-suc (ξ-·₁ (ξ-·₁ β-μ)) ⟩
`suc ((ƛ ƛ `case (` S Z) (` Z) (`suc (plus · ` Z · ` S Z)))
· `suc `zero · two)
⟨ ξ-suc (ξ-·₁ (β-ƛ (V-suc V-zero))) ⟩
—→⟨ ξ-suc (ξ-·₁ (β-ƛ (V-suc V-zero))) ⟩
`suc ((ƛ `case (`suc `zero) (` Z) (`suc (plus · ` Z · ` S Z))) · two)
⟨ ξ-suc (β-ƛ (V-suc (V-suc V-zero))) ⟩
—→⟨ ξ-suc (β-ƛ (V-suc (V-suc V-zero))) ⟩
`suc (`case (`suc `zero) (two) (`suc (plus · ` Z · two)))
⟨ ξ-suc (β-suc V-zero) ⟩
—→⟨ ξ-suc (β-suc V-zero) ⟩
`suc (`suc (plus · `zero · two))
⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ β-μ))) ⟩
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ β-μ))) ⟩
`suc (`suc ((ƛ ƛ `case (` S Z) (` Z) (`suc (plus · ` Z · ` S Z)))
· `zero · two))
⟨ ξ-suc (ξ-suc (ξ-·₁ (β-ƛ V-zero))) ⟩
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (β-ƛ V-zero))) ⟩
`suc (`suc ((ƛ `case `zero (` Z) (`suc (plus · ` Z · ` S Z))) · two))
⟨ ξ-suc (ξ-suc (β-ƛ (V-suc (V-suc V-zero)))) ⟩
—→⟨ ξ-suc (ξ-suc (β-ƛ (V-suc (V-suc V-zero)))) ⟩
`suc (`suc (`case `zero (two) (`suc (plus · ` Z · two))))
⟨ ξ-suc (ξ-suc β-zero) ⟩
—→⟨ ξ-suc (ξ-suc β-zero) ⟩
`suc (`suc (`suc (`suc `zero)))
\end{code}
And finally, a similar sample reduction for Church numerals.
\begin{code}
_ : plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero ↠ `suc `suc `suc `suc `zero {∅}
_ : plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero ↠ `suc `suc `suc `suc `zero {∅}
_ =
begin
plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero
⟨ ξ-·₁ (ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ))) ⟩
—→⟨ ξ-·₁ (ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ))) ⟩
(ƛ ƛ ƛ twoᶜ · ` S Z · (` S S Z · ` S Z · ` Z)) · twoᶜ · sucᶜ · `zero
⟨ ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
—→⟨ ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
(ƛ ƛ twoᶜ · ` S Z · (twoᶜ · ` S Z · ` Z)) · sucᶜ · `zero
⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
(ƛ twoᶜ · sucᶜ · (twoᶜ · sucᶜ · ` Z)) · `zero
⟨ β-ƛ V-zero ⟩
—→⟨ β-ƛ V-zero ⟩
twoᶜ · sucᶜ · (twoᶜ · sucᶜ · `zero)
⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
(ƛ sucᶜ · (sucᶜ · ` Z)) · (twoᶜ · sucᶜ · `zero)
⟨ ξ-·₂ V-ƛ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
—→⟨ ξ-·₂ V-ƛ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
(ƛ sucᶜ · (sucᶜ · ` Z)) · ((ƛ sucᶜ · (sucᶜ · ` Z)) · `zero)
⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
—→⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
(ƛ sucᶜ · (sucᶜ · ` Z)) · (sucᶜ · (sucᶜ · `zero))
⟨ ξ-·₂ V-ƛ (ξ-·₂ V-ƛ (β-ƛ V-zero)) ⟩
—→⟨ ξ-·₂ V-ƛ (ξ-·₂ V-ƛ (β-ƛ V-zero)) ⟩
(ƛ sucᶜ · (sucᶜ · ` Z)) · (sucᶜ · `suc `zero)
⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc V-zero)) ⟩
—→⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc V-zero)) ⟩
(ƛ sucᶜ · (sucᶜ · ` Z)) · `suc (`suc `zero)
⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
—→⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
sucᶜ · (sucᶜ · `suc (`suc `zero))
⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc (V-suc V-zero))) ⟩
—→⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc (V-suc V-zero))) ⟩
sucᶜ · `suc (`suc (`suc `zero))
⟨ β-ƛ (V-suc (V-suc (V-suc V-zero))) ⟩
—→⟨ β-ƛ (V-suc (V-suc (V-suc V-zero))) ⟩
`suc (`suc (`suc (`suc `zero)))
\end{code}
## Values do not reduce
Values do not reduce.
\begin{code}
Value-lemma : ∀ {Γ A} {M N : Γ ⊢ A} → Value M → ¬ (M ↦ N)
Value-lemma V-ƛ ()
Value-lemma V-zero ()
Value-lemma (V-suc VM) (ξ-suc M↦N) = Value-lemma VM M↦N
\end{code}
We have now completed all the definitions, which of
necessity included some important results: Canonical Forms,
Substitution preserves types, and Preservation.
We now turn to proving the remaining results from the
preceding section.
As a corollary, terms that reduce are not values.
\begin{code}
↦-corollary : ∀ {Γ A} {M N : Γ ⊢ A} → (M ↦ N) → ¬ Value M
↦-corollary M↦N VM = Value-lemma VM M↦N
\end{code}
### Exercise `V¬—→`, `—→¬V`
Adapt the reesults of the previous section to show values do
not reduce, and its corollary, terms that reduce are not
values.
<!--
\begin{code}
V¬—→ : ∀ {Γ A} {M N : Γ ⊢ A} → Value M → ¬ (M —→ N)
V¬—→ V-ƛ ()
V¬—→ V-zero ()
V¬—→ (V-suc VM) (ξ-suc M—→N) = V¬—→ VM M—→N
—→¬V : ∀ {Γ A} {M N : Γ ⊢ A} → (M —→ N) → ¬ Value M
—→¬V M—→N VM = V¬—→ VM M—→N
\end{code}
-->
## Progress
\begin{code}
data Progress {A} (M : ∅ ⊢ A) : Set where
step : ∀ {N : ∅ ⊢ A}
→ M ↦ N
→ M —→ N
-------------
→ Progress M
done :
@ -1030,16 +1031,16 @@ progress : ∀ {A} → (M : ∅ ⊢ A) → Progress M
progress (` ())
progress (ƛ N) = done V-ƛ
progress (L · M) with progress L
... | step L↦L = step (ξ-·₁ L↦L)
... | step L—→L = step (ξ-·₁ L—→L)
... | done V-ƛ with progress M
... | step M↦M = step (ξ-·₂ V-ƛ M↦M)
... | step M—→M = step (ξ-·₂ V-ƛ M—→M)
... | done VM = step (β-ƛ VM)
progress (`zero) = done V-zero
progress (`suc M) with progress M
... | step M↦M = step (ξ-suc M↦M)
... | step M—→M = step (ξ-suc M—→M)
... | done VM = done (V-suc VM)
progress (`case L M N) with progress L
... | step L↦L = step (ξ-case L↦L)
... | step L—→L = step (ξ-case L—→L)
... | done V-zero = step (β-zero)
... | done (V-suc VL) = step (β-suc VL)
progress (μ N) = step (β-μ)
@ -1075,7 +1076,7 @@ reduction finished.
data Steps : ∀ {A} → ∅ ⊢ A → Set where
steps : ∀ {A} {L N : ∅ ⊢ A}
→ L ↠ N
→ L ↠ N
→ Finished N
----------
→ Steps L
@ -1091,8 +1092,8 @@ eval : ∀ {A}
eval (gas zero) L = steps (L ∎) out-of-gas
eval (gas (suc m)) L with progress L
... | done VL = steps (L ∎) (done VL)
... | step {M} LM with eval (gas m) M
... | steps M↠N fin = steps (L ↦⟨ L↦M ⟩ M↠N) fin
... | step {M} L—→M with eval (gas m) M
... | steps M—↠N fin = steps (L —→⟨ L—→M ⟩ M—↠N) fin
\end{code}
## Examples
@ -1106,7 +1107,7 @@ _ : eval (gas 100) (plus · two · two) ≡
`case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
· `suc (`suc `zero)
· `suc (`suc `zero)
⟨ ξ-·₁ (ξ-·₁ β-μ) ⟩
—→⟨ ξ-·₁ (ξ-·₁ β-μ) ⟩
`case (` (S Z)) (` Z)
@ -1119,7 +1120,7 @@ _ : eval (gas 100) (plus · two · two) ≡
· ` (S Z)))))
· `suc (`suc `zero)
· `suc (`suc `zero)
⟨ ξ-·₁ (β-ƛ (V-suc (V-suc V-zero))) ⟩
—→⟨ ξ-·₁ (β-ƛ (V-suc (V-suc V-zero))) ⟩
`case (`suc (`suc `zero)) (` Z)
(`suc
@ -1130,7 +1131,7 @@ _ : eval (gas 100) (plus · two · two) ≡
· ` Z
· ` (S Z))))
· `suc (`suc `zero)
⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
—→⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
`case (`suc (`suc `zero)) (`suc (`suc `zero))
(`suc
((μ
@ -1139,7 +1140,7 @@ _ : eval (gas 100) (plus · two · two) ≡
`case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
· ` Z
· `suc (`suc `zero)))
⟨ β-suc (V-suc V-zero) ⟩
—→⟨ β-suc (V-suc V-zero) ⟩
`suc
((μ
@ -1147,7 +1148,7 @@ _ : eval (gas 100) (plus · two · two) ≡
`case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
· `suc `zero
· `suc (`suc `zero))
⟨ ξ-suc (ξ-·₁ (ξ-·₁ β-μ)) ⟩
—→⟨ ξ-suc (ξ-·₁ (ξ-·₁ β-μ)) ⟩
`suc
((ƛ
@ -1161,7 +1162,7 @@ _ : eval (gas 100) (plus · two · two) ≡
· ` (S Z)))))
· `suc `zero
· `suc (`suc `zero))
⟨ ξ-suc (ξ-·₁ (β-ƛ (V-suc V-zero))) ⟩
—→⟨ ξ-suc (ξ-·₁ (β-ƛ (V-suc V-zero))) ⟩
`suc
((ƛ
`case (`suc `zero) (` Z)
@ -1173,7 +1174,7 @@ _ : eval (gas 100) (plus · two · two) ≡
· ` Z
· ` (S Z))))
· `suc (`suc `zero))
⟨ ξ-suc (β-ƛ (V-suc (V-suc V-zero))) ⟩
—→⟨ ξ-suc (β-ƛ (V-suc (V-suc V-zero))) ⟩
`suc
`case (`suc `zero) (`suc (`suc `zero))
(`suc
@ -1183,7 +1184,7 @@ _ : eval (gas 100) (plus · two · two) ≡
`case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
· ` Z
· `suc (`suc `zero)))
⟨ ξ-suc (β-suc V-zero) ⟩
—→⟨ ξ-suc (β-suc V-zero) ⟩
`suc
(`suc
((μ
@ -1192,7 +1193,7 @@ _ : eval (gas 100) (plus · two · two) ≡
`case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
· `zero
· `suc (`suc `zero)))
⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ β-μ))) ⟩
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ β-μ))) ⟩
`suc
(`suc
((ƛ
@ -1207,7 +1208,7 @@ _ : eval (gas 100) (plus · two · two) ≡
· ` (S Z)))))
· `zero
· `suc (`suc `zero)))
⟨ ξ-suc (ξ-suc (ξ-·₁ (β-ƛ V-zero))) ⟩
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (β-ƛ V-zero))) ⟩
`suc
(`suc
((ƛ
@ -1220,7 +1221,7 @@ _ : eval (gas 100) (plus · two · two) ≡
· ` Z
· ` (S Z))))
· `suc (`suc `zero)))
⟨ ξ-suc (ξ-suc (β-ƛ (V-suc (V-suc V-zero)))) ⟩
—→⟨ ξ-suc (ξ-suc (β-ƛ (V-suc (V-suc V-zero)))) ⟩
`suc
(`suc
`case `zero (`suc (`suc `zero))
@ -1231,7 +1232,7 @@ _ : eval (gas 100) (plus · two · two) ≡
`case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
· ` Z
· `suc (`suc `zero))))
⟨ ξ-suc (ξ-suc β-zero) ⟩ `suc (`suc (`suc (`suc `zero))) ∎)
—→⟨ ξ-suc (ξ-suc β-zero) ⟩ `suc (`suc (`suc (`suc `zero))) ∎)
(done (V-suc (V-suc (V-suc (V-suc V-zero)))))
_ = refl
\end{code}
@ -1246,7 +1247,7 @@ _ : eval (gas 100) (plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero) ≡
· (ƛ (ƛ ` (S Z) · (` (S Z) · ` Z)))
· (ƛ `suc (` Z))
· `zero
⟨ ξ-·₁ (ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ))) ⟩
—→⟨ ξ-·₁ (ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ))) ⟩
@ -1255,39 +1256,39 @@ _ : eval (gas 100) (plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero) ≡
· (ƛ (ƛ ` (S Z) · (` (S Z) · ` Z)))
· (ƛ `suc (` Z))
· `zero
⟨ ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
—→⟨ ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
(ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · ` (S Z) ·
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · ` (S Z) · ` Z)))
· (ƛ `suc (` Z))
· `zero
⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
(ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ `suc (` Z)) ·
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ `suc (` Z)) · ` Z))
· `zero
⟨ β-ƛ V-zero ⟩
—→⟨ β-ƛ V-zero ⟩
(ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ `suc (` Z)) ·
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ `suc (` Z)) · `zero)
⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
(ƛ (ƛ `suc (` Z)) · ((ƛ `suc (` Z)) · ` Z)) ·
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ `suc (` Z)) · `zero)
⟨ ξ-·₂ V-ƛ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
—→⟨ ξ-·₂ V-ƛ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
(ƛ (ƛ `suc (` Z)) · ((ƛ `suc (` Z)) · ` Z)) ·
((ƛ (ƛ `suc (` Z)) · ((ƛ `suc (` Z)) · ` Z)) · `zero)
⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
—→⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
(ƛ (ƛ `suc (` Z)) · ((ƛ `suc (` Z)) · ` Z)) ·
((ƛ `suc (` Z)) · ((ƛ `suc (` Z)) · `zero))
⟨ ξ-·₂ V-ƛ (ξ-·₂ V-ƛ (β-ƛ V-zero)) ⟩
—→⟨ ξ-·₂ V-ƛ (ξ-·₂ V-ƛ (β-ƛ V-zero)) ⟩
(ƛ (ƛ `suc (` Z)) · ((ƛ `suc (` Z)) · ` Z)) ·
((ƛ `suc (` Z)) · `suc `zero)
⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc V-zero)) ⟩
(ƛ (ƛ `suc (` Z)) · ((ƛ `suc (` Z)) · ` Z)) · `suc (`suc `zero)
—→⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc V-zero)) ⟩
(ƛ (ƛ `suc (` Z)) · ((ƛ `suc (` Z)) · ` Z)) · `suc (`suc `zero) —→
β-ƛ (V-suc (V-suc V-zero)) ⟩
(ƛ `suc (` Z)) · ((ƛ `suc (` Z)) · `suc (`suc `zero))
(ƛ `suc (` Z)) · ((ƛ `suc (` Z)) · `suc (`suc `zero)) —→
ξ-·₂ V-ƛ (β-ƛ (V-suc (V-suc V-zero))) ⟩
(ƛ `suc (` Z)) · `suc (`suc (`suc `zero))
(ƛ `suc (` Z)) · `suc (`suc (`suc `zero)) —→
β-ƛ (V-suc (V-suc (V-suc V-zero))) ⟩
`suc (`suc (`suc (`suc `zero))) ∎)
(done (V-suc (V-suc (V-suc (V-suc V-zero)))))

View file

@ -537,14 +537,17 @@ consist of a constructor and a deconstructor, in our case `λ` and `·`,
which reduces directly. We give them names starting with the Greek
letter `β` (_beta_) and such rules are traditionally called _beta rules_.
The rules are deterministic, in that at most one rule applies to every
term. We will show in the next chapter that for every well-typed term
If a term is a value, then no reduction applies; conversely,
if a reduction applies to a term then it is not a value.
We will show in the next chapter that for well-typed terms
this exhausts the possibilities: for every well-typed term
either a reduction applies or it is a value.
For numbers, zero does not reduce and successor reduces the subterm.
A case expression reduces its argument to a number, and then chooses
the zero or successor branch as appropriate. A fixpoint replaces
the bound variable by the entire fixpoint term.
the bound variable by the entire fixpoint term; this is the one
case where we substitute by a term that is not a value.
Here are the rules formalised in Agda.
@ -695,9 +698,53 @@ data _—↠_ : Term → Term → Set where
→ L —↠′ N
\end{code}
The three constructors specify, respectively, that `—↠` includes `—→`
and is reflexive and transitive.
and is reflexive and transitive. A good exercise is to show that
the two definitions are equivalent (indeed, isomoprhic).
It is a straightforward exercise to show the two are equivalent.
One important property a reduction relation might satisfy is
to be _confluent_. If term `L` reduces to two other terms,
`M` and `N`, then both of these reduce to a common term `P`.
It can be illustrated as follows.
L
/ \
/ \
/ \
M N
\ /
\ /
\ /
P
Here `L`, `M`, `N` are universally quantified while `P`
is existentially quantified. If each line stand for zero
or more reduction steps, this is called confluence,
while if each line stands a single reduction step it is
called the _diamond property_. In symbols:
confluence : ∀ {L M N} → ∃[ P ]
( ((L —↠ M) × (L —↠ N))
--------------------
→ ((M —↠ P) × (M —↠ P)) )
diamond : ∀ {L M N} → ∃[ P ]
( ((L —↠ M) × (L —↠ N))
--------------------
→ ((M —↠ P) × (M —↠ P)) )
All of the reduction systems studied in this text are determistic.
In symbols:
deterministic : ∀ {L M N}
→ L —→ M
→ L —→ N
------
→ M ≡ N
It is easy to show that every deterministic relation satisfies
the diamond property, and that every relation that satisfies
the diamond property is confluent. Hence, all the reduction
systems studied in this text are trivially confluent.
#### Exercise (`—↠≃—↠′`)

View file

@ -120,94 +120,6 @@ If we expand out the negations, we have
which are the same function with the arguments swapped.
## Reduction is deterministic
Reduction is deterministic: for any term, there is at most
one other term to which it reduces.
A case term takes four arguments (three subterms and a bound
variable), and to complete our proof we will need a variant
of congruence to deal with functions of four arguments. It
is exactly analogous to `cong` and `cong₂` as defined previously.
\begin{code}
cong₄ : ∀ {A B C D E : Set} (f : A → B → C → D → E)
{s w : A} {t x : B} {u y : C} {v z : D}
→ s ≡ w → t ≡ x → u ≡ y → v ≡ z → f s t u v ≡ f w x y z
cong₄ f refl refl refl refl = refl
\end{code}
It is now straightforward to show that reduction is deterministic.
\begin{code}
det : ∀ {M M M″}
→ (M —→ M)
→ (M —→ M″)
--------
→ M ≡ M″
det (ξ-·₁ L—→L) (ξ-·₁ L—→L″) = cong₂ _·_ (det L—→L L—→L″) refl
det (ξ-·₁ L—→L) (ξ-·₂ VL M—→M″) = ⊥-elim (V¬—→ VL L—→L)
det (ξ-·₁ L—→L) (β-ƛ _) = ⊥-elim (V¬—→ V-ƛ L—→L)
det (ξ-·₂ VL _) (ξ-·₁ L—→L″) = ⊥-elim (V¬—→ VL L—→L″)
det (ξ-·₂ _ M—→M) (ξ-·₂ _ M—→M″) = cong₂ _·_ refl (det M—→M M—→M″)
det (ξ-·₂ _ M—→M) (β-ƛ VM) = ⊥-elim (V¬—→ VM M—→M)
det (β-ƛ _) (ξ-·₁ L—→L″) = ⊥-elim (V¬—→ V-ƛ L—→L″)
det (β-ƛ VM) (ξ-·₂ _ M—→M″) = ⊥-elim (V¬—→ VM M—→M″)
det (β-ƛ _) (β-ƛ _) = refl
det (ξ-suc M—→M) (ξ-suc M—→M″) = cong `suc_ (det M—→M M—→M″)
det (ξ-case L—→L) (ξ-case L—→L″) = cong₄ `case_[zero⇒_|suc_⇒_]
(det L—→L L—→L″) refl refl refl
det (ξ-case L—→L) β-zero = ⊥-elim (V¬—→ V-zero L—→L)
det (ξ-case L—→L) (β-suc VL) = ⊥-elim (V¬—→ (V-suc VL) L—→L)
det β-zero (ξ-case M—→M″) = ⊥-elim (V¬—→ V-zero M—→M″)
det β-zero β-zero = refl
det (β-suc VL) (ξ-case L—→L″) = ⊥-elim (V¬—→ (V-suc VL) L—→L″)
det (β-suc _) (β-suc _) = refl
det β-μ β-μ = refl
\end{code}
The proof is by induction over possible reductions. We consider
three typical cases.
* Two instances of `ξ-·₁`.
L —→ L L —→ L″
-------------- ξ-·₁ -------------- ξ-·₁
L · M —→ L · M L · M —→ L″ · M
By induction we have `L ≡ L″`, and hence by congruence
`L · M ≡ L″ · M`.
* An instance of `ξ-·₁` and an instance of `ξ-·₂`.
Value L
L —→ L M —→ M″
-------------- ξ-·₁ -------------- ξ-·₂
L · M —→ L · M L · M —→ L · M″
The rule on the left requires `L` to reduce, but the rule on the right
requires `L` to be a value. This is a contradiction since values do
not reduce. If the value constraint was removed from `ξ-·₂`, or from
one of the other reduction rules, then determinism would no longer hold.
* Two instances of `β-ƛ`.
Value V Value V
---------------------------- β-ƛ ---------------------------- β-ƛ
(ƛ x ⇒ N) · V —→ N [ x := V ] (ƛ x ⇒ N) · V —→ N [ x := V ]
Since the left-hand sides are identical, the right-hand sides are
also identical.
Almost half the lines in the above proof are redundant, e.g., the case
when one rule is `ξ-·₁` and the other is `ξ-·₂` is considered twice,
once with `ξ-·₁` first and `ξ-·₂` second, and the other time with the
two swapped. What we might like to do is delete the redundant lines
and add
det M—→M M—→M″ = sym (det M—→M″ M—→M)
to the bottom of the proof. But this does not work. The termination
checker complains, because the arguments have merely switched order
and neither is smaller.
## Canonical Forms
@ -668,7 +580,6 @@ we require an arbitrary context `Γ`, as in the statement of the lemma.
Here is the formal statement and proof that substitution preserves types.
\begin{code}
subst : ∀ {Γ y N V A B}
→ ∅ ⊢ V ⦂ B
→ Γ , y ⦂ B ⊢ N ⦂ A
--------------------
→ Γ ⊢ N [ y := V ] ⦂ A
@ -1454,6 +1365,98 @@ wttdgs ⊢M M—↠N = unstuck (preserves ⊢M M—↠N)
\end{code}
## Reduction is deterministic
When we introduced reduction, we claimed it was deterministic:
for any term, there is at most one other term to which it reduces.
A case term takes four arguments (three subterms and a bound
variable), and to complete our proof we will need a variant
of congruence to deal with functions of four arguments. It
is exactly analogous to `cong` and `cong₂` as defined previously.
\begin{code}
cong₄ : ∀ {A B C D E : Set} (f : A → B → C → D → E)
{s w : A} {t x : B} {u y : C} {v z : D}
→ s ≡ w → t ≡ x → u ≡ y → v ≡ z → f s t u v ≡ f w x y z
cong₄ f refl refl refl refl = refl
\end{code}
It is now straightforward to show that reduction is deterministic.
\begin{code}
det : ∀ {M M M″}
→ (M —→ M)
→ (M —→ M″)
--------
→ M ≡ M″
det (ξ-·₁ L—→L) (ξ-·₁ L—→L″) = cong₂ _·_ (det L—→L L—→L″) refl
det (ξ-·₁ L—→L) (ξ-·₂ VL M—→M″) = ⊥-elim (V¬—→ VL L—→L)
det (ξ-·₁ L—→L) (β-ƛ _) = ⊥-elim (V¬—→ V-ƛ L—→L)
det (ξ-·₂ VL _) (ξ-·₁ L—→L″) = ⊥-elim (V¬—→ VL L—→L″)
det (ξ-·₂ _ M—→M) (ξ-·₂ _ M—→M″) = cong₂ _·_ refl (det M—→M M—→M″)
det (ξ-·₂ _ M—→M) (β-ƛ VM) = ⊥-elim (V¬—→ VM M—→M)
det (β-ƛ _) (ξ-·₁ L—→L″) = ⊥-elim (V¬—→ V-ƛ L—→L″)
det (β-ƛ VM) (ξ-·₂ _ M—→M″) = ⊥-elim (V¬—→ VM M—→M″)
det (β-ƛ _) (β-ƛ _) = refl
det (ξ-suc M—→M) (ξ-suc M—→M″) = cong `suc_ (det M—→M M—→M″)
det (ξ-case L—→L) (ξ-case L—→L″) = cong₄ `case_[zero⇒_|suc_⇒_]
(det L—→L L—→L″) refl refl refl
det (ξ-case L—→L) β-zero = ⊥-elim (V¬—→ V-zero L—→L)
det (ξ-case L—→L) (β-suc VL) = ⊥-elim (V¬—→ (V-suc VL) L—→L)
det β-zero (ξ-case M—→M″) = ⊥-elim (V¬—→ V-zero M—→M″)
det β-zero β-zero = refl
det (β-suc VL) (ξ-case L—→L″) = ⊥-elim (V¬—→ (V-suc VL) L—→L″)
det (β-suc _) (β-suc _) = refl
det β-μ β-μ = refl
\end{code}
The proof is by induction over possible reductions. We consider
three typical cases.
* Two instances of `ξ-·₁`.
L —→ L L —→ L″
-------------- ξ-·₁ -------------- ξ-·₁
L · M —→ L · M L · M —→ L″ · M
By induction we have `L ≡ L″`, and hence by congruence
`L · M ≡ L″ · M`.
* An instance of `ξ-·₁` and an instance of `ξ-·₂`.
Value L
L —→ L M —→ M″
-------------- ξ-·₁ -------------- ξ-·₂
L · M —→ L · M L · M —→ L · M″
The rule on the left requires `L` to reduce, but the rule on the right
requires `L` to be a value. This is a contradiction since values do
not reduce. If the value constraint was removed from `ξ-·₂`, or from
one of the other reduction rules, then determinism would no longer hold.
* Two instances of `β-ƛ`.
Value V Value V
---------------------------- β-ƛ ---------------------------- β-ƛ
(ƛ x ⇒ N) · V —→ N [ x := V ] (ƛ x ⇒ N) · V —→ N [ x := V ]
Since the left-hand sides are identical, the right-hand sides are
also identical.
Almost half the lines in the above proof are redundant, e.g., the case
when one rule is `ξ-·₁` and the other is `ξ-·₂` is considered twice,
once with `ξ-·₁` first and `ξ-·₂` second, and the other time with the
two swapped. What we might like to do is delete the redundant lines
and add
det M—→M M—→M″ = sym (det M—→M″ M—→M)
to the bottom of the proof. But this does not work. The termination
checker complains, because the arguments have merely switched order
and neither is smaller.
#### Exercise: `progress-preservation`
Without peeking at their statements above, write down the progress