finished first draft of Stlc
This commit is contained in:
parent
3b62e81c06
commit
8658bb1b42
6 changed files with 9077 additions and 8538 deletions
446
out/Maps.md
446
out/Maps.md
|
@ -32,7 +32,8 @@ much difference, though, because we've been careful to name our
|
|||
own definitions and theorems the same as their counterparts in the
|
||||
standard library, wherever they overlap.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="1490" class="Keyword"
|
||||
>open</a
|
||||
><a name="1494"
|
||||
|
@ -217,7 +218,8 @@ standard library, wherever they overlap.
|
|||
><a name="1800" class="Symbol"
|
||||
>)</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
Documentation for the standard library can be found at
|
||||
<https://agda.github.io/agda-stdlib/>.
|
||||
|
@ -229,7 +231,8 @@ maps. For this purpose, we again use the type `Id` from the
|
|||
[Lists](sf/Lists.html) chapter. To make this chapter self contained,
|
||||
we repeat its definition here.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="2166" class="Keyword"
|
||||
>data</a
|
||||
><a name="2170"
|
||||
|
@ -270,11 +273,13 @@ we repeat its definition here.
|
|||
><a name="2197" href="Maps.html#2171" class="Datatype"
|
||||
>Id</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
We recall a standard fact of logic.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="2262" href="Maps.html#2262" class="Function"
|
||||
>contrapositive</a
|
||||
><a name="2276"
|
||||
|
@ -423,12 +428,14 @@ We recall a standard fact of logic.
|
|||
><a name="2374" class="Symbol"
|
||||
>)</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
Using the above, we can decide equality of two identifiers
|
||||
by deciding equality on the underlying strings.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="2509" href="Maps.html#2509" class="Function Operator"
|
||||
>_≟_</a
|
||||
><a name="2512"
|
||||
|
@ -706,7 +713,8 @@ by deciding equality on the underlying strings.
|
|||
><a name="2737" href="https://agda.github.io/agda-stdlib/Agda.Builtin.Equality.html#140" class="InductiveConstructor"
|
||||
>refl</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
## Total Maps
|
||||
|
||||
|
@ -727,7 +735,8 @@ We build partial maps in two steps. First, we define a type of
|
|||
_total maps_ that return a default value when we look up a key
|
||||
that is not present in the map.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="3573" href="Maps.html#3573" class="Function"
|
||||
>TotalMap</a
|
||||
><a name="3581"
|
||||
|
@ -772,12 +781,14 @@ that is not present in the map.
|
|||
><a name="3612" href="Maps.html#3603" class="Bound"
|
||||
>A</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
Intuitively, a total map over anfi element type `A` _is_ just a
|
||||
function that can be used to look up ids, yielding `A`s.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="3760" class="Keyword"
|
||||
>module</a
|
||||
><a name="3766"
|
||||
|
@ -789,13 +800,15 @@ function that can be used to look up ids, yielding `A`s.
|
|||
><a name="3776" class="Keyword"
|
||||
>where</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
The function `always` yields a total map given a
|
||||
default element; this map always returns the default element when
|
||||
applied to any id.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="3944" href="Maps.html#3944" class="Function"
|
||||
>always</a
|
||||
><a name="3950"
|
||||
|
@ -856,13 +869,15 @@ applied to any id.
|
|||
><a name="3991" href="Maps.html#3985" class="Bound"
|
||||
>v</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
More interesting is the update function, which (as before) takes
|
||||
a map `ρ`, a key `x`, and a value `v` and returns a new map that
|
||||
takes `x` to `v` and takes every other key to whatever `ρ` does.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="4216" class="Keyword"
|
||||
>infixl</a
|
||||
><a name="4222"
|
||||
|
@ -1035,7 +1050,8 @@ takes `x` to `v` and takes every other key to whatever `ρ` does.
|
|||
><a name="4353" href="Maps.html#4300" class="Bound"
|
||||
>y</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
This definition is a nice example of higher-order programming.
|
||||
The update function takes a _function_ `ρ` and yields a new
|
||||
|
@ -1044,7 +1060,8 @@ function that behaves like the desired map.
|
|||
For example, we can build a map taking ids to naturals, where `x`
|
||||
maps to 42, `y` maps to 69, and every other key maps to 0, as follows:
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="4688" class="Keyword"
|
||||
>module</a
|
||||
><a name="4694"
|
||||
|
@ -1313,7 +1330,8 @@ maps to 42, `y` maps to 69, and every other key maps to 0, as follows:
|
|||
><a name="4935" href="https://agda.github.io/agda-stdlib/Agda.Builtin.Equality.html#140" class="InductiveConstructor"
|
||||
>refl</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
This completes the definition of total maps. Note that we don't
|
||||
need to define a `find` operation because it is just function
|
||||
|
@ -1327,7 +1345,8 @@ the lemmas!
|
|||
#### Exercise: 1 star, optional (apply-always)
|
||||
The `always` map returns its default element for all keys:
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="5411" class="Keyword"
|
||||
>postulate</a
|
||||
><a name="5420"
|
||||
|
@ -1408,10 +1427,12 @@ The `always` map returns its default element for all keys:
|
|||
><a name="5478" href="Maps.html#5447" class="Bound"
|
||||
>v</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
<div class="hidden">
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="5528" href="Maps.html#5528" class="Function"
|
||||
>apply-always′</a
|
||||
><a name="5541"
|
||||
|
@ -1508,7 +1529,8 @@ The `always` map returns its default element for all keys:
|
|||
><a name="5606" href="https://agda.github.io/agda-stdlib/Agda.Builtin.Equality.html#140" class="InductiveConstructor"
|
||||
>refl</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
#### Exercise: 2 stars, optional (update-eq)
|
||||
|
@ -1516,7 +1538,8 @@ Next, if we update a map `ρ` at a key `x` with a new value `v`
|
|||
and then look up `x` in the map resulting from the update, we get
|
||||
back `v`:
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="5830" class="Keyword"
|
||||
>postulate</a
|
||||
><a name="5839"
|
||||
|
@ -1634,10 +1657,12 @@ back `v`:
|
|||
><a name="5928" href="Maps.html#5889" class="Bound"
|
||||
>v</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
<div class="hidden">
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="5978" href="Maps.html#5978" class="Function"
|
||||
>update-eq′</a
|
||||
><a name="5988"
|
||||
|
@ -1845,7 +1870,8 @@ back `v`:
|
|||
><a name="6151" class="Symbol"
|
||||
>)</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
#### Exercise: 2 stars, optional (update-neq)
|
||||
|
@ -1853,7 +1879,8 @@ On the other hand, if we update a map `m` at a key `x` and
|
|||
then look up a _different_ key `y` in the resulting map, we get
|
||||
the same result that `m` would have given:
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="6400" href="Maps.html#6400" class="Function"
|
||||
>update-neq</a
|
||||
><a name="6410"
|
||||
|
@ -2105,12 +2132,14 @@ the same result that `m` would have given:
|
|||
><a name="6594" href="https://agda.github.io/agda-stdlib/Agda.Builtin.Equality.html#140" class="InductiveConstructor"
|
||||
>refl</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
For the following lemmas, since maps are represented by functions, to
|
||||
show two maps equal we will need to postulate extensionality.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="6759" class="Keyword"
|
||||
>postulate</a
|
||||
><a name="6768"
|
||||
|
@ -2221,7 +2250,8 @@ show two maps equal we will need to postulate extensionality.
|
|||
><a name="6849" href="Maps.html#6805" class="Bound"
|
||||
>ρ′</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
#### Exercise: 2 stars, optional (update-shadow)
|
||||
If we update a map `ρ` at a key `x` with a value `v` and then
|
||||
|
@ -2230,7 +2260,8 @@ resulting map behaves the same (gives the same result when applied
|
|||
to any key) as the simpler map obtained by performing just
|
||||
the second update on `ρ`:
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="7205" class="Keyword"
|
||||
>postulate</a
|
||||
><a name="7214"
|
||||
|
@ -2384,10 +2415,12 @@ the second update on `ρ`:
|
|||
><a name="7330" class="Symbol"
|
||||
>)</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
<div class="hidden">
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="7380" href="Maps.html#7380" class="Function"
|
||||
>update-shadow′</a
|
||||
><a name="7394"
|
||||
|
@ -2770,7 +2803,8 @@ the second update on `ρ`:
|
|||
><a name="7702" href="Maps.html#7676" class="Bound"
|
||||
>x≢y</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
#### Exercise: 2 stars (update-same)
|
||||
|
@ -2778,7 +2812,8 @@ Prove the following theorem, which states that if we update a map `ρ` to
|
|||
assign key `x` the same value as it already has in `ρ`, then the
|
||||
result is equal to `ρ`:
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="7940" class="Keyword"
|
||||
>postulate</a
|
||||
><a name="7949"
|
||||
|
@ -2879,10 +2914,12 @@ result is equal to `ρ`:
|
|||
><a name="8018" href="Maps.html#7975" class="Bound"
|
||||
>ρ</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
<div class="hidden">
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="8068" href="Maps.html#8068" class="Function"
|
||||
>update-same′</a
|
||||
><a name="8080"
|
||||
|
@ -3148,7 +3185,8 @@ result is equal to `ρ`:
|
|||
><a name="8299" href="https://agda.github.io/agda-stdlib/Agda.Builtin.Equality.html#140" class="InductiveConstructor"
|
||||
>refl</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
#### Exercise: 3 stars, recommended (update-permute)
|
||||
|
@ -3156,7 +3194,8 @@ Prove one final property of the `update` function: If we update a map
|
|||
`m` at two distinct keys, it doesn't matter in which order we do the
|
||||
updates.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="8540" class="Keyword"
|
||||
>postulate</a
|
||||
><a name="8549"
|
||||
|
@ -3370,10 +3409,12 @@ updates.
|
|||
><a name="8697" class="Symbol"
|
||||
>)</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
<div class="hidden">
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="8747" href="Maps.html#8747" class="Function"
|
||||
>update-permute′</a
|
||||
><a name="8762"
|
||||
|
@ -4044,11 +4085,13 @@ updates.
|
|||
><a name="9312" class="Symbol"
|
||||
>))</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
And a slightly different version of the same proof.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="9399" href="Maps.html#9399" class="Function"
|
||||
>update-permute′′</a
|
||||
><a name="9415"
|
||||
|
@ -4640,7 +4683,8 @@ And a slightly different version of the same proof.
|
|||
><a name="9895" class="Symbol"
|
||||
>))</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
## Partial maps
|
||||
|
@ -4649,7 +4693,8 @@ Finally, we define _partial maps_ on top of total maps. A partial
|
|||
map with elements of type `A` is simply a total map with elements
|
||||
of type `Maybe A` and default element `nothing`.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="10132" href="Maps.html#10132" class="Function"
|
||||
>PartialMap</a
|
||||
><a name="10142"
|
||||
|
@ -4698,9 +4743,11 @@ of type `Maybe A` and default element `nothing`.
|
|||
><a name="10187" class="Symbol"
|
||||
>)</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
</pre>
|
||||
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="10214" class="Keyword"
|
||||
>module</a
|
||||
><a name="10220"
|
||||
|
@ -4712,9 +4759,11 @@ of type `Maybe A` and default element `nothing`.
|
|||
><a name="10232" class="Keyword"
|
||||
>where</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
</pre>
|
||||
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="10265" href="Maps.html#10265" class="Function"
|
||||
>∅</a
|
||||
><a name="10266"
|
||||
|
@ -4763,9 +4812,11 @@ of type `Maybe A` and default element `nothing`.
|
|||
><a name="10312" href="https://agda.github.io/agda-stdlib/Data.Maybe.Base.html#403" class="InductiveConstructor"
|
||||
>nothing</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
</pre>
|
||||
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="10347" class="Keyword"
|
||||
>infixl</a
|
||||
><a name="10353"
|
||||
|
@ -4912,11 +4963,13 @@ of type `Maybe A` and default element `nothing`.
|
|||
><a name="10473" class="Symbol"
|
||||
>)</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
We now lift all of the basic lemmas about total maps to partial maps.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="10573" href="Maps.html#10573" class="Function"
|
||||
>apply-∅</a
|
||||
><a name="10580"
|
||||
|
@ -5013,9 +5066,11 @@ We now lift all of the basic lemmas about total maps to partial maps.
|
|||
><a name="10667" href="Maps.html#10632" class="Bound"
|
||||
>x</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
</pre>
|
||||
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="10696" href="Maps.html#10696" class="Function"
|
||||
>update-eq</a
|
||||
><a name="10705"
|
||||
|
@ -5177,9 +5232,11 @@ We now lift all of the basic lemmas about total maps to partial maps.
|
|||
><a name="10837" class="Symbol"
|
||||
>)</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
</pre>
|
||||
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="10866" href="Maps.html#10866" class="Function"
|
||||
>update-neq</a
|
||||
><a name="10876"
|
||||
|
@ -5389,9 +5446,11 @@ We now lift all of the basic lemmas about total maps to partial maps.
|
|||
><a name="11035" href="Maps.html#10994" class="Bound"
|
||||
>x≢y</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
</pre>
|
||||
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="11066" href="Maps.html#11066" class="Function"
|
||||
>update-shadow</a
|
||||
><a name="11079"
|
||||
|
@ -5601,9 +5660,11 @@ We now lift all of the basic lemmas about total maps to partial maps.
|
|||
><a name="11248" class="Symbol"
|
||||
>)</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
</pre>
|
||||
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="11277" href="Maps.html#11277" class="Function"
|
||||
>update-same</a
|
||||
><a name="11288"
|
||||
|
@ -5786,9 +5847,11 @@ We now lift all of the basic lemmas about total maps to partial maps.
|
|||
><a name="11462" href="Maps.html#11411" class="Bound"
|
||||
>x</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
</pre>
|
||||
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="11491" href="Maps.html#11491" class="Function"
|
||||
>update-permute</a
|
||||
><a name="11505"
|
||||
|
@ -6074,4 +6137,259 @@ We now lift all of the basic lemmas about total maps to partial maps.
|
|||
><a name="11718" href="Maps.html#11664" class="Bound"
|
||||
>x≢y</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
We will also need the following basic facts about the `Maybe` type.
|
||||
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="11818" href="Maps.html#11818" class="Function"
|
||||
>just≢nothing</a
|
||||
><a name="11830"
|
||||
> </a
|
||||
><a name="11831" class="Symbol"
|
||||
>:</a
|
||||
><a name="11832"
|
||||
> </a
|
||||
><a name="11833" class="Symbol"
|
||||
>∀</a
|
||||
><a name="11834"
|
||||
> </a
|
||||
><a name="11835" class="Symbol"
|
||||
>{</a
|
||||
><a name="11836" href="Maps.html#11836" class="Bound"
|
||||
>X</a
|
||||
><a name="11837"
|
||||
> </a
|
||||
><a name="11838" class="Symbol"
|
||||
>:</a
|
||||
><a name="11839"
|
||||
> </a
|
||||
><a name="11840" class="PrimitiveType"
|
||||
>Set</a
|
||||
><a name="11843" class="Symbol"
|
||||
>}</a
|
||||
><a name="11844"
|
||||
> </a
|
||||
><a name="11845" class="Symbol"
|
||||
>→</a
|
||||
><a name="11846"
|
||||
> </a
|
||||
><a name="11847" class="Symbol"
|
||||
>∀</a
|
||||
><a name="11848"
|
||||
> </a
|
||||
><a name="11849" class="Symbol"
|
||||
>{</a
|
||||
><a name="11850" href="Maps.html#11850" class="Bound"
|
||||
>x</a
|
||||
><a name="11851"
|
||||
> </a
|
||||
><a name="11852" class="Symbol"
|
||||
>:</a
|
||||
><a name="11853"
|
||||
> </a
|
||||
><a name="11854" href="Maps.html#11836" class="Bound"
|
||||
>X</a
|
||||
><a name="11855" class="Symbol"
|
||||
>}</a
|
||||
><a name="11856"
|
||||
> </a
|
||||
><a name="11857" class="Symbol"
|
||||
>→</a
|
||||
><a name="11858"
|
||||
> </a
|
||||
><a name="11859" href="https://agda.github.io/agda-stdlib/Relation.Nullary.html#414" class="Function Operator"
|
||||
>¬</a
|
||||
><a name="11860"
|
||||
> </a
|
||||
><a name="11861" class="Symbol"
|
||||
>(</a
|
||||
><a name="11862" href="https://agda.github.io/agda-stdlib/Agda.Builtin.Equality.html#83" class="Datatype Operator"
|
||||
>_≡_</a
|
||||
><a name="11865"
|
||||
> </a
|
||||
><a name="11866" class="Symbol"
|
||||
>{</a
|
||||
><a name="11867" class="Argument"
|
||||
>A</a
|
||||
><a name="11868"
|
||||
> </a
|
||||
><a name="11869" class="Symbol"
|
||||
>=</a
|
||||
><a name="11870"
|
||||
> </a
|
||||
><a name="11871" href="https://agda.github.io/agda-stdlib/Data.Maybe.Base.html#335" class="Datatype"
|
||||
>Maybe</a
|
||||
><a name="11876"
|
||||
> </a
|
||||
><a name="11877" href="Maps.html#11836" class="Bound"
|
||||
>X</a
|
||||
><a name="11878" class="Symbol"
|
||||
>}</a
|
||||
><a name="11879"
|
||||
> </a
|
||||
><a name="11880" class="Symbol"
|
||||
>(</a
|
||||
><a name="11881" href="https://agda.github.io/agda-stdlib/Data.Maybe.Base.html#373" class="InductiveConstructor"
|
||||
>just</a
|
||||
><a name="11885"
|
||||
> </a
|
||||
><a name="11886" href="Maps.html#11850" class="Bound"
|
||||
>x</a
|
||||
><a name="11887" class="Symbol"
|
||||
>)</a
|
||||
><a name="11888"
|
||||
> </a
|
||||
><a name="11889" href="https://agda.github.io/agda-stdlib/Data.Maybe.Base.html#403" class="InductiveConstructor"
|
||||
>nothing</a
|
||||
><a name="11896" class="Symbol"
|
||||
>)</a
|
||||
><a name="11897"
|
||||
>
|
||||
</a
|
||||
><a name="11900" href="Maps.html#11818" class="Function"
|
||||
>just≢nothing</a
|
||||
><a name="11912"
|
||||
> </a
|
||||
><a name="11913" class="Symbol"
|
||||
>()</a
|
||||
><a name="11915"
|
||||
>
|
||||
|
||||
</a
|
||||
><a name="11919" href="Maps.html#11919" class="Function"
|
||||
>just-injective</a
|
||||
><a name="11933"
|
||||
> </a
|
||||
><a name="11934" class="Symbol"
|
||||
>:</a
|
||||
><a name="11935"
|
||||
> </a
|
||||
><a name="11936" class="Symbol"
|
||||
>∀</a
|
||||
><a name="11937"
|
||||
> </a
|
||||
><a name="11938" class="Symbol"
|
||||
>{</a
|
||||
><a name="11939" href="Maps.html#11939" class="Bound"
|
||||
>X</a
|
||||
><a name="11940"
|
||||
> </a
|
||||
><a name="11941" class="Symbol"
|
||||
>:</a
|
||||
><a name="11942"
|
||||
> </a
|
||||
><a name="11943" class="PrimitiveType"
|
||||
>Set</a
|
||||
><a name="11946" class="Symbol"
|
||||
>}</a
|
||||
><a name="11947"
|
||||
> </a
|
||||
><a name="11948" class="Symbol"
|
||||
>{</a
|
||||
><a name="11949" href="Maps.html#11949" class="Bound"
|
||||
>x</a
|
||||
><a name="11950"
|
||||
> </a
|
||||
><a name="11951" href="Maps.html#11951" class="Bound"
|
||||
>y</a
|
||||
><a name="11952"
|
||||
> </a
|
||||
><a name="11953" class="Symbol"
|
||||
>:</a
|
||||
><a name="11954"
|
||||
> </a
|
||||
><a name="11955" href="Maps.html#11939" class="Bound"
|
||||
>X</a
|
||||
><a name="11956" class="Symbol"
|
||||
>}</a
|
||||
><a name="11957"
|
||||
> </a
|
||||
><a name="11958" class="Symbol"
|
||||
>→</a
|
||||
><a name="11959"
|
||||
> </a
|
||||
><a name="11960" href="https://agda.github.io/agda-stdlib/Agda.Builtin.Equality.html#83" class="Datatype Operator"
|
||||
>_≡_</a
|
||||
><a name="11963"
|
||||
> </a
|
||||
><a name="11964" class="Symbol"
|
||||
>{</a
|
||||
><a name="11965" class="Argument"
|
||||
>A</a
|
||||
><a name="11966"
|
||||
> </a
|
||||
><a name="11967" class="Symbol"
|
||||
>=</a
|
||||
><a name="11968"
|
||||
> </a
|
||||
><a name="11969" href="https://agda.github.io/agda-stdlib/Data.Maybe.Base.html#335" class="Datatype"
|
||||
>Maybe</a
|
||||
><a name="11974"
|
||||
> </a
|
||||
><a name="11975" href="Maps.html#11939" class="Bound"
|
||||
>X</a
|
||||
><a name="11976" class="Symbol"
|
||||
>}</a
|
||||
><a name="11977"
|
||||
> </a
|
||||
><a name="11978" class="Symbol"
|
||||
>(</a
|
||||
><a name="11979" href="https://agda.github.io/agda-stdlib/Data.Maybe.Base.html#373" class="InductiveConstructor"
|
||||
>just</a
|
||||
><a name="11983"
|
||||
> </a
|
||||
><a name="11984" href="Maps.html#11949" class="Bound"
|
||||
>x</a
|
||||
><a name="11985" class="Symbol"
|
||||
>)</a
|
||||
><a name="11986"
|
||||
> </a
|
||||
><a name="11987" class="Symbol"
|
||||
>(</a
|
||||
><a name="11988" href="https://agda.github.io/agda-stdlib/Data.Maybe.Base.html#373" class="InductiveConstructor"
|
||||
>just</a
|
||||
><a name="11992"
|
||||
> </a
|
||||
><a name="11993" href="Maps.html#11951" class="Bound"
|
||||
>y</a
|
||||
><a name="11994" class="Symbol"
|
||||
>)</a
|
||||
><a name="11995"
|
||||
> </a
|
||||
><a name="11996" class="Symbol"
|
||||
>→</a
|
||||
><a name="11997"
|
||||
> </a
|
||||
><a name="11998" href="Maps.html#11949" class="Bound"
|
||||
>x</a
|
||||
><a name="11999"
|
||||
> </a
|
||||
><a name="12000" href="https://agda.github.io/agda-stdlib/Agda.Builtin.Equality.html#83" class="Datatype Operator"
|
||||
>≡</a
|
||||
><a name="12001"
|
||||
> </a
|
||||
><a name="12002" href="Maps.html#11951" class="Bound"
|
||||
>y</a
|
||||
><a name="12003"
|
||||
>
|
||||
</a
|
||||
><a name="12006" href="Maps.html#11919" class="Function"
|
||||
>just-injective</a
|
||||
><a name="12020"
|
||||
> </a
|
||||
><a name="12021" href="https://agda.github.io/agda-stdlib/Agda.Builtin.Equality.html#140" class="InductiveConstructor"
|
||||
>refl</a
|
||||
><a name="12025"
|
||||
> </a
|
||||
><a name="12026" class="Symbol"
|
||||
>=</a
|
||||
><a name="12027"
|
||||
> </a
|
||||
><a name="12028" href="https://agda.github.io/agda-stdlib/Agda.Builtin.Equality.html#140" class="InductiveConstructor"
|
||||
>refl</a
|
||||
>
|
||||
|
||||
</pre>
|
||||
|
|
6725
out/Stlc.md
6725
out/Stlc.md
File diff suppressed because it is too large
Load diff
10267
out/StlcProp.md
10267
out/StlcProp.md
File diff suppressed because it is too large
Load diff
|
@ -373,3 +373,13 @@ We now lift all of the basic lemmas about total maps to partial maps.
|
|||
→ x ≢ y → (ρ , x ↦ v , y ↦ w) ≡ (ρ , y ↦ w , x ↦ v)
|
||||
update-permute ρ x v y w x≢y = TotalMap.update-permute ρ x (just v) y (just w) x≢y
|
||||
\end{code}
|
||||
|
||||
We will also need the following basic facts about the `Maybe` type.
|
||||
|
||||
\begin{code}
|
||||
just≢nothing : ∀ {X : Set} → ∀ {x : X} → ¬ (_≡_ {A = Maybe X} (just x) nothing)
|
||||
just≢nothing ()
|
||||
|
||||
just-injective : ∀ {X : Set} {x y : X} → _≡_ {A = Maybe X} (just x) (just y) → x ≡ y
|
||||
just-injective refl = refl
|
||||
\end{code}
|
||||
|
|
157
src/Stlc.lagda
157
src/Stlc.lagda
|
@ -7,7 +7,7 @@ permalink : /Stlc
|
|||
The _lambda-calculus_, first published by the logician Alonzo Church in
|
||||
1932, is a core calculus with only three syntactic constructs:
|
||||
variables, abstraction, and application. It embodies the concept of
|
||||
_functional abstraction_, which shows up in almsot every programming
|
||||
_functional abstraction_, which shows up in almost every programming
|
||||
language in some form (as functions, procedures, or methods).
|
||||
The _simply-typed lambda calculus_ (or STLC) is a variant of the
|
||||
lambda calculus published by Church in 1940. It has just the three
|
||||
|
@ -38,10 +38,10 @@ lists, records, subtyping, and mutable state.
|
|||
|
||||
\begin{code}
|
||||
open import Maps using (Id; id; _≟_; PartialMap; module PartialMap)
|
||||
open PartialMap using (∅) renaming (_,_↦_ to _,_∶_)
|
||||
open PartialMap using (∅; just-injective) renaming (_,_↦_ to _,_∶_)
|
||||
open import Data.Nat using (ℕ)
|
||||
open import Data.Maybe using (Maybe; just; nothing)
|
||||
open import Relation.Nullary using (Dec; yes; no)
|
||||
open import Relation.Nullary using (Dec; yes; no; ¬_)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
|
||||
\end{code}
|
||||
|
||||
|
@ -86,7 +86,7 @@ and three are for the base type, booleans:
|
|||
Abstraction is also called lambda abstraction, and is the construct
|
||||
from which the calculus takes its name.
|
||||
|
||||
With the exception of variables, each construct either constructs
|
||||
With the exception of variables, each term form either constructs
|
||||
a value of a given type (abstractions yield functions, true and
|
||||
false yield booleans) or deconstructs it (applications use functions,
|
||||
conditionals use booleans). We will see this again when we come
|
||||
|
@ -177,21 +177,12 @@ two = λ[ f ∶ 𝔹 ⇒ 𝔹 ] λ[ x ∶ 𝔹 ] ` f · (` f · ` x)
|
|||
In an abstraction `λ[ x ∶ A ] N` we call `x` the _bound_ variable
|
||||
and `N` the _body_ of the abstraction. One of the most important
|
||||
aspects of lambda calculus is that names of bound variables are
|
||||
irrelevant. Thus the two terms
|
||||
irrelevant. Thus the four terms
|
||||
|
||||
λ[ f ∶ 𝔹 ⇒ 𝔹 ] λ[ x ∶ 𝔹 ] ` f · (` f · ` x)
|
||||
|
||||
and
|
||||
|
||||
λ[ g ∶ 𝔹 ⇒ 𝔹 ] λ[ y ∶ 𝔹 ] ` g · (` g · ` y)
|
||||
|
||||
and
|
||||
|
||||
λ[ fred ∶ 𝔹 ⇒ 𝔹 ] λ[ xander ∶ 𝔹 ] ` fred · (` fred · ` xander)
|
||||
|
||||
and even
|
||||
|
||||
λ[ x ∶ 𝔹 ⇒ 𝔹 ] λ[ f ∶ 𝔹 ] ` x · (` x · ` f)
|
||||
* `` λ[ f ∶ 𝔹 ⇒ 𝔹 ] λ[ x ∶ 𝔹 ] ` f · (` f · ` x) ``
|
||||
* `` λ[ g ∶ 𝔹 ⇒ 𝔹 ] λ[ y ∶ 𝔹 ] ` g · (` g · ` y) ``
|
||||
* `` λ[ fred ∶ 𝔹 ⇒ 𝔹 ] λ[ xander ∶ 𝔹 ] ` fred · (` fred · ` xander) ``
|
||||
* `` λ[ x ∶ 𝔹 ⇒ 𝔹 ] λ[ f ∶ 𝔹 ] ` x · (` x · ` f) ``
|
||||
|
||||
are all considered equivalent. This equivalence relation
|
||||
is sometimes called _alpha renaming_.
|
||||
|
@ -460,8 +451,8 @@ conditional, we first reduce the condition until it becomes a value;
|
|||
if the condition is true the conditional reduces to the first
|
||||
branch and if false it reduces to the second branch.a
|
||||
|
||||
In an informal presentation of the formal semantics, the rules
|
||||
are written as follows.
|
||||
In an informal presentation of the formal semantics,
|
||||
the rules for reduction are written as follows.
|
||||
|
||||
L ⟹ L′
|
||||
--------------- ξ·₁
|
||||
|
@ -501,6 +492,8 @@ a deconstructor, in our case `λ` and `·`, or
|
|||
We give them names starting with the Greek letter beta, `β`,
|
||||
and indeed such rules are traditionally called beta rules.
|
||||
|
||||
Here are the above rules formalised in Agda.
|
||||
|
||||
\begin{code}
|
||||
infix 10 _⟹_
|
||||
|
||||
|
@ -659,20 +652,62 @@ In general, we use typing _judgements_ of the form
|
|||
Γ ⊢ M ∶ A
|
||||
|
||||
which asserts in type environment `Γ` that term `M` has type `A`.
|
||||
Here `Γ` provides types for all the free variables in `M`.
|
||||
Environment `Γ` provides types for all the free variables in `M`.
|
||||
|
||||
Here are three examples.
|
||||
|
||||
* `` ∅ , f ∶ 𝔹 ⇒ 𝔹 , x ∶ 𝔹 ⊢ ` f · (` f · ` x) ∶ 𝔹 ``
|
||||
* `` ∅ , f ∶ 𝔹 ⇒ 𝔹 ⊢ (λ[ x ∶ 𝔹 ] ` f · (` f · ` x)) ∶ 𝔹 ⇒ 𝔹 ``
|
||||
* `` ∅ ⊢ (λ[ f ∶ 𝔹 ⇒ 𝔹 ] λ[ x ∶ 𝔹 ] ` f · (` f · ` x)) ∶ (𝔹 ⇒ 𝔹) ⇒ 𝔹 ⇒ 𝔹 ``
|
||||
|
||||
* `` ∅ , f ∶ 𝔹 ⇒ 𝔹 ⊢ (λ[ x ∶ 𝔹 ] ` f · (` f · ` x)) ∶ 𝔹 ⇒ 𝔹 ``
|
||||
|
||||
* `` ∅ , f ∶ 𝔹 ⇒ 𝔹 , x ∶ 𝔹 ⊢ ` f · (` f · ` x) ∶ 𝔹 ``
|
||||
|
||||
Environments are maps from free variables to types, built using `∅`
|
||||
Environments are partial maps from identifiers to types, built using `∅`
|
||||
for the empty map, and `Γ , x ∶ A` for the map that extends
|
||||
environment `Γ` by mapping variable `x` to type `A`.
|
||||
|
||||
In an informal presentation of the formal semantics,
|
||||
the rules for typing are written as follows.
|
||||
|
||||
Γ x ≡ A
|
||||
----------- Ax
|
||||
Γ ⊢ ` x ∶ A
|
||||
|
||||
Γ , x ∶ A ⊢ N ∶ B
|
||||
------------------------ ⇒-I
|
||||
Γ ⊢ λ[ x ∶ A ] N ∶ A ⇒ B
|
||||
|
||||
Γ ⊢ L ∶ A ⇒ B
|
||||
Γ ⊢ M ∶ A
|
||||
-------------- ⇒-E
|
||||
Γ ⊢ L · M ∶ B
|
||||
|
||||
------------- 𝔹-I₁
|
||||
Γ ⊢ true ∶ 𝔹
|
||||
|
||||
-------------- 𝔹-I₂
|
||||
Γ ⊢ false ∶ 𝔹
|
||||
|
||||
Γ ⊢ L : 𝔹
|
||||
Γ ⊢ M ∶ A
|
||||
Γ ⊢ N ∶ A
|
||||
-------------------------- 𝔹-E
|
||||
Γ ⊢ if L then M else N ∶ A
|
||||
|
||||
As we will show later, the rules are deterministic, in that
|
||||
at most one rule applies to every term.
|
||||
|
||||
The proof rules come in pairs, with rules to introduce and to
|
||||
eliminate each connective, labeled `-I` and `-E`, respectively. As we
|
||||
read the rules from top to bottom, introduction and elimination rules
|
||||
do what they say on the tin: the first _introduces_ a formula for the
|
||||
connective, which appears in the conclusion but not in the premises;
|
||||
while the second _eliminates_ a formula for the connective, which appears in
|
||||
a premise but not in the conclusion. An introduction rule describes
|
||||
how to construct a value of the type (abstractions yield functions,
|
||||
true and false yield booleans), while an elimination rule describes
|
||||
how to deconstruct a value of the given type (applications use
|
||||
functions, conditionals use booleans).
|
||||
|
||||
Here are the above rules formalised in Agda.
|
||||
|
||||
\begin{code}
|
||||
Context : Set
|
||||
|
@ -702,7 +737,38 @@ data _⊢_∶_ : Context → Term → Type → Set where
|
|||
Γ ⊢ if L then M else N ∶ A
|
||||
\end{code}
|
||||
|
||||
## Example type derivations
|
||||
#### Example type derivations
|
||||
|
||||
Here are a couple of typing examples. First, here is how
|
||||
they would be written in an informal description of the
|
||||
formal semantics.
|
||||
|
||||
Derivation of `not`:
|
||||
|
||||
------------ Ax ------------- 𝔹-I₂ ------------- 𝔹-I₁
|
||||
Γ₀ ⊢ ` x ∶ 𝔹 Γ₀ ⊢ false ∶ 𝔹 Γ₀ ⊢ true ∶ 𝔹
|
||||
------------------------------------------------------ 𝔹-E
|
||||
Γ₀ ⊢ if ` x then false else true ∶ 𝔹
|
||||
--------------------------------------------------- ⇒-I
|
||||
∅ ⊢ λ[ x ∶ 𝔹 ] if ` x then false else true ∶ 𝔹 ⇒ 𝔹
|
||||
|
||||
where `Γ₀ = ∅ , x ∶ 𝔹`.
|
||||
|
||||
Derivation of `two`:
|
||||
----------------- Ax ------------ Ax
|
||||
Γ₂ ⊢ ` f ∶ 𝔹 ⇒ 𝔹 Γ₂ ⊢ ` x ∶ 𝔹
|
||||
----------------- Ax ------------------------------------- ⇒-E
|
||||
Γ₂ ⊢ ` f ∶ 𝔹 ⇒ 𝔹 Γ₂ ⊢ ` f · ` x ∶ 𝔹
|
||||
------------------------------------------- ⇒-E
|
||||
Γ₂ ⊢ ` f · (` f · ` x) ∶ 𝔹
|
||||
------------------------------------------ ⇒-I
|
||||
Γ₁ ⊢ λ[ x ∶ 𝔹 ] ` f · (` f · ` x) ∶ 𝔹 ⇒ 𝔹
|
||||
---------------------------------------------------------- ⇒-I
|
||||
∅ ⊢ λ[ f ∶ 𝔹 ⇒ 𝔹 ] λ[ x ∶ 𝔹 ] ` f · (` f · ` x) ∶ 𝔹 ⇒ 𝔹
|
||||
|
||||
where `Γ₁ = ∅ , f ∶ 𝔹 ⇒ 𝔹` and `Γ₂ = ∅ , f ∶ 𝔹 ⇒ 𝔹 , x ∶ 𝔹`.
|
||||
|
||||
Here are the above derivations formalised in Agda.
|
||||
|
||||
\begin{code}
|
||||
typing₁ : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹
|
||||
|
@ -712,8 +778,10 @@ typing₂ : ∅ ⊢ two ∶ (𝔹 ⇒ 𝔹) ⇒ 𝔹 ⇒ 𝔹
|
|||
typing₂ = ⇒-I (⇒-I (⇒-E (Ax refl) (⇒-E (Ax refl) (Ax refl))))
|
||||
\end{code}
|
||||
|
||||
## Interaction with Agda
|
||||
|
||||
Construction of a type derivation is best done interactively.
|
||||
We start with the declaration:
|
||||
Start with the declaration:
|
||||
|
||||
typing₁ : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹
|
||||
typing₁ = ?
|
||||
|
@ -747,4 +815,37 @@ hole. After filling in all holes, the term is as above.
|
|||
|
||||
The entire process can be automated using Agsy, invoked with C-c C-a.
|
||||
|
||||
#### Non-examples
|
||||
|
||||
We can also show that terms are _not_ typeable.
|
||||
For example, here is a formal proof that it is not possible
|
||||
to type the term `` λ[ x ∶ 𝔹 ] λ[ y ∶ 𝔹 ] ` x · ` y ``.
|
||||
In other words, no type `A` is the type of this term.
|
||||
|
||||
\begin{code}
|
||||
contradiction : ∀ {A B} → ¬ (𝔹 ≡ A ⇒ B)
|
||||
contradiction ()
|
||||
|
||||
notyping : ∀ {A} → ¬ (∅ ⊢ λ[ x ∶ 𝔹 ] λ[ y ∶ 𝔹 ] ` x · ` y ∶ A)
|
||||
notyping (⇒-I (⇒-I (⇒-E (Ax Γx) (Ax Γy)))) = contradiction (just-injective Γx)
|
||||
\end{code}
|
||||
|
||||
#### Quiz
|
||||
|
||||
For each of the following, given a type `A` for which it is derivable,
|
||||
or explain why there is no such `A`.
|
||||
|
||||
1. `` ∅ , y ∶ A ⊢ λ[ x ∶ 𝔹 ] ` x ∶ 𝔹 ⇒ 𝔹 ``
|
||||
2. `` ∅ ⊢ λ[ y ∶ 𝔹 ⇒ 𝔹 ] λ[ x ∶ 𝔹 ] ` y · ` x ∶ A ``
|
||||
3. `` ∅ ⊢ λ[ y ∶ 𝔹 ⇒ 𝔹 ] λ[ x ∶ 𝔹 ] ` x · ` y ∶ A ``
|
||||
4. `` ∅ , x ∶ A ⊢ λ[ y : 𝔹 ⇒ 𝔹 ] `y · `x : A ``
|
||||
|
||||
For each of the following, give type `A`, `B`, and `C` for which it is derivable,
|
||||
or explain why there are no such types.
|
||||
|
||||
1. `` ∅ ⊢ λ[ y ∶ 𝔹 ⇒ 𝔹 ⇒ 𝔹 ] λ[ x ∶ 𝔹 ] ` y · ` x ∶ A ``
|
||||
2. `` ∅ , x ∶ A ⊢ x · x ∶ B ``
|
||||
3. `` ∅ , x ∶ A , y ∶ B ⊢ λ[ z ∶ C ] ` x · (` y · ` z) ∶ D ``
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -19,7 +19,8 @@ open import Data.Sum using (_⊎_; inj₁; inj₂)
|
|||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; trans; sym)
|
||||
open import Maps using (Id; _≟_; PartialMap)
|
||||
open Maps.PartialMap using (∅; apply-∅; update-permute) renaming (_,_↦_ to _,_∶_)
|
||||
open Maps.PartialMap using (∅; apply-∅; update-permute; just≢nothing; just-injective)
|
||||
renaming (_,_↦_ to _,_∶_)
|
||||
open import Stlc
|
||||
import Data.Nat using (ℕ)
|
||||
\end{code}
|
||||
|
@ -320,12 +321,9 @@ postulate
|
|||
|
||||
<div class="hidden">
|
||||
\begin{code}
|
||||
contradiction : ∀ {X : Set} → ∀ {x : X} → ¬ (_≡_ {A = Maybe X} (just x) nothing)
|
||||
contradiction ()
|
||||
|
||||
∅⊢-closed′ : ∀ {M A} → ∅ ⊢ M ∶ A → closed M
|
||||
∅⊢-closed′ {M} {A} ⊢M {x} x∈M with free-lemma x∈M ⊢M
|
||||
... | (B , ∅x≡B) = contradiction (trans (sym ∅x≡B) (apply-∅ x))
|
||||
... | (B , ∅x≡B) = just≢nothing (trans (sym ∅x≡B) (apply-∅ x))
|
||||
\end{code}
|
||||
</div>
|
||||
|
||||
|
@ -504,8 +502,6 @@ weaken-closed {V} {A} {Γ} ⊢V = context-lemma Γ~Γ′ ⊢V
|
|||
x∉V : ¬ (x ∈ V)
|
||||
x∉V = ∅⊢-closed ⊢V {x}
|
||||
|
||||
just-injective : ∀ {X : Set} {x y : X} → _≡_ {A = Maybe X} (just x) (just y) → x ≡ y
|
||||
just-injective refl = refl
|
||||
\end{code}
|
||||
|
||||
\begin{code}
|
||||
|
|
Loading…
Reference in a new issue