fiddling
This commit is contained in:
parent
3ba45ceb62
commit
8e8c90c252
3 changed files with 869 additions and 15 deletions
843
extra/extra/Typed.lagda.broken
Normal file
843
extra/extra/Typed.lagda.broken
Normal file
|
@ -0,0 +1,843 @@
|
|||
---
|
||||
title : "Typed: Raw terms with types (broken)"
|
||||
layout : page
|
||||
permalink : /Typed
|
||||
---
|
||||
|
||||
This version uses raw terms. Substitution presumes that no
|
||||
generation of fresh names is required.
|
||||
|
||||
The substitution algorithm is based on one by McBride.
|
||||
It is given a map from names to terms. Say the mapping of a
|
||||
name is trivial if it takes a name to a term consisting of
|
||||
just the variable with that name. No fresh names are required
|
||||
if the mapping on each variable is either trivial or to a
|
||||
closed term. However, the proof of correctness currently
|
||||
contains a hole, and may be difficult to repair.
|
||||
|
||||
## Imports
|
||||
|
||||
\begin{code}
|
||||
module Typed where
|
||||
\end{code}
|
||||
|
||||
\begin{code}
|
||||
import Relation.Binary.PropositionalEquality as Eq
|
||||
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.List using (List; []; _∷_; _++_; map; foldr; filter)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_)
|
||||
open import Data.String using (String; _≟_)
|
||||
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Function using (_∘_)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Relation.Nullary.Negation using (¬?)
|
||||
import fresh.Collections
|
||||
|
||||
pattern [_] x = x ∷ []
|
||||
pattern [_,_] x y = x ∷ y ∷ []
|
||||
pattern [_,_,_] x y z = x ∷ y ∷ z ∷ []
|
||||
\end{code}
|
||||
|
||||
|
||||
## Syntax
|
||||
|
||||
\begin{code}
|
||||
infix 4 _∋_`:_
|
||||
infix 4 _⊢_`:_
|
||||
infixl 5 _,_`:_
|
||||
infixr 6 _`→_
|
||||
infix 6 `λ_`→_
|
||||
infixl 7 `if0_then_else_
|
||||
infix 8 `suc_ `pred_ `Y_
|
||||
infixl 9 _·_
|
||||
|
||||
Id : Set
|
||||
Id = String
|
||||
|
||||
data Type : Set where
|
||||
`ℕ : Type
|
||||
_`→_ : Type → Type → Type
|
||||
|
||||
data Env : Set where
|
||||
ε : Env
|
||||
_,_`:_ : Env → Id → Type → Env
|
||||
|
||||
data Term : Set where
|
||||
`_ : Id → Term
|
||||
`λ_`→_ : Id → Term → Term
|
||||
_·_ : Term → Term → Term
|
||||
`zero : Term
|
||||
`suc_ : Term → Term
|
||||
`pred_ : Term → Term
|
||||
`if0_then_else_ : Term → Term → Term → Term
|
||||
`Y_ : Term → Term
|
||||
|
||||
data _∋_`:_ : Env → Id → Type → Set where
|
||||
|
||||
Z : ∀ {Γ A x}
|
||||
--------------------
|
||||
→ Γ , x `: A ∋ x `: A
|
||||
|
||||
S : ∀ {Γ A B x w}
|
||||
→ w ≢ x
|
||||
→ Γ ∋ w `: B
|
||||
--------------------
|
||||
→ Γ , x `: A ∋ w `: B
|
||||
|
||||
data _⊢_`:_ : Env → Term → Type → Set where
|
||||
|
||||
Ax : ∀ {Γ A x}
|
||||
→ Γ ∋ x `: A
|
||||
--------------
|
||||
→ Γ ⊢ ` x `: A
|
||||
|
||||
⊢λ : ∀ {Γ x N A B}
|
||||
→ Γ , x `: A ⊢ N `: B
|
||||
--------------------------
|
||||
→ Γ ⊢ (`λ x `→ N) `: A `→ B
|
||||
|
||||
_·_ : ∀ {Γ L M A B}
|
||||
→ Γ ⊢ L `: A `→ B
|
||||
→ Γ ⊢ M `: A
|
||||
----------------
|
||||
→ Γ ⊢ L · M `: B
|
||||
|
||||
⊢zero : ∀ {Γ}
|
||||
----------------
|
||||
→ Γ ⊢ `zero `: `ℕ
|
||||
|
||||
⊢suc : ∀ {Γ M}
|
||||
→ Γ ⊢ M `: `ℕ
|
||||
-----------------
|
||||
→ Γ ⊢ `suc M `: `ℕ
|
||||
|
||||
⊢pred : ∀ {Γ M}
|
||||
→ Γ ⊢ M `: `ℕ
|
||||
------------------
|
||||
→ Γ ⊢ `pred M `: `ℕ
|
||||
|
||||
⊢if0 : ∀ {Γ L M N A}
|
||||
→ Γ ⊢ L `: `ℕ
|
||||
→ Γ ⊢ M `: A
|
||||
→ Γ ⊢ N `: A
|
||||
------------------------------
|
||||
→ Γ ⊢ `if0 L then M else N `: A
|
||||
|
||||
⊢Y : ∀ {Γ M A}
|
||||
→ Γ ⊢ M `: A `→ A
|
||||
----------------
|
||||
→ Γ ⊢ `Y M `: A
|
||||
\end{code}
|
||||
|
||||
## Test examples
|
||||
|
||||
\begin{code}
|
||||
s≢z : "s" ≢ "z"
|
||||
s≢z ()
|
||||
|
||||
n≢z : "n" ≢ "z"
|
||||
n≢z ()
|
||||
|
||||
n≢s : "n" ≢ "s"
|
||||
n≢s ()
|
||||
|
||||
m≢z : "m" ≢ "z"
|
||||
m≢z ()
|
||||
|
||||
m≢s : "m" ≢ "s"
|
||||
m≢s ()
|
||||
|
||||
m≢n : "m" ≢ "n"
|
||||
m≢n ()
|
||||
|
||||
p≢n : "p" ≢ "n"
|
||||
p≢n ()
|
||||
|
||||
p≢m : "p" ≢ "m"
|
||||
p≢m ()
|
||||
|
||||
two : Term
|
||||
two = `suc `suc `zero
|
||||
|
||||
⊢two : ε ⊢ two `: `ℕ
|
||||
⊢two = ⊢suc (⊢suc ⊢zero)
|
||||
|
||||
plus : Term
|
||||
plus = `Y (`λ "p" `→ `λ "m" `→ `λ "n" `→
|
||||
`if0 ` "m" then ` "n" else `suc (` "p" · (`pred (` "m")) · ` "n"))
|
||||
|
||||
⊢plus : ε ⊢ plus `: `ℕ `→ `ℕ `→ `ℕ
|
||||
⊢plus = (⊢Y (⊢λ (⊢λ (⊢λ (⊢if0 (Ax ⊢m) (Ax ⊢n) (⊢suc (Ax ⊢p · (⊢pred (Ax ⊢m)) · Ax ⊢n)))))))
|
||||
where
|
||||
⊢p = S p≢n (S p≢m Z)
|
||||
⊢m = S m≢n Z
|
||||
⊢n = Z
|
||||
|
||||
four : Term
|
||||
four = plus · two · two
|
||||
|
||||
⊢four : ε ⊢ four `: `ℕ
|
||||
⊢four = ⊢plus · ⊢two · ⊢two
|
||||
|
||||
Ch : Type
|
||||
Ch = (`ℕ `→ `ℕ) `→ `ℕ `→ `ℕ
|
||||
|
||||
twoCh : Term
|
||||
twoCh = `λ "s" `→ `λ "z" `→ (` "s" · (` "s" · ` "z"))
|
||||
|
||||
⊢twoCh : ε ⊢ twoCh `: Ch
|
||||
⊢twoCh = (⊢λ (⊢λ (Ax ⊢s · (Ax ⊢s · Ax ⊢z))))
|
||||
where
|
||||
⊢s = S s≢z Z
|
||||
⊢z = Z
|
||||
|
||||
plusCh : Term
|
||||
plusCh = `λ "m" `→ `λ "n" `→ `λ "s" `→ `λ "z" `→
|
||||
` "m" · ` "s" · (` "n" · ` "s" · ` "z")
|
||||
|
||||
⊢plusCh : ε ⊢ plusCh `: Ch `→ Ch `→ Ch
|
||||
⊢plusCh = (⊢λ (⊢λ (⊢λ (⊢λ (Ax ⊢m · Ax ⊢s · (Ax ⊢n · Ax ⊢s · Ax ⊢z))))))
|
||||
where
|
||||
⊢m = S m≢z (S m≢s (S m≢n Z))
|
||||
⊢n = S n≢z (S n≢s Z)
|
||||
⊢s = S s≢z Z
|
||||
⊢z = Z
|
||||
|
||||
fromCh : Term
|
||||
fromCh = `λ "m" `→ ` "m" · (`λ "s" `→ `suc ` "s") · `zero
|
||||
|
||||
⊢fromCh : ε ⊢ fromCh `: Ch `→ `ℕ
|
||||
⊢fromCh = (⊢λ (Ax ⊢m · (⊢λ (⊢suc (Ax ⊢s))) · ⊢zero))
|
||||
where
|
||||
⊢m = Z
|
||||
⊢s = Z
|
||||
|
||||
fourCh : Term
|
||||
fourCh = fromCh · (plusCh · twoCh · twoCh)
|
||||
|
||||
⊢fourCh : ε ⊢ fourCh `: `ℕ
|
||||
⊢fourCh = ⊢fromCh · (⊢plusCh · ⊢twoCh · ⊢twoCh)
|
||||
\end{code}
|
||||
|
||||
|
||||
## Erasure
|
||||
|
||||
\begin{code}
|
||||
lookup : ∀ {Γ x A} → Γ ∋ x `: A → Id
|
||||
lookup {Γ , x `: A} Z = x
|
||||
lookup {Γ , x `: A} (S w≢ ⊢w) = lookup {Γ} ⊢w
|
||||
|
||||
erase : ∀ {Γ M A} → Γ ⊢ M `: A → Term
|
||||
erase (Ax ⊢w) = ` lookup ⊢w
|
||||
erase (⊢λ {x = x} ⊢N) = `λ x `→ erase ⊢N
|
||||
erase (⊢L · ⊢M) = erase ⊢L · erase ⊢M
|
||||
erase (⊢zero) = `zero
|
||||
erase (⊢suc ⊢M) = `suc (erase ⊢M)
|
||||
erase (⊢pred ⊢M) = `pred (erase ⊢M)
|
||||
erase (⊢if0 ⊢L ⊢M ⊢N) = `if0 (erase ⊢L) then (erase ⊢M) else (erase ⊢N)
|
||||
erase (⊢Y ⊢M) = `Y (erase ⊢M)
|
||||
\end{code}
|
||||
|
||||
### Properties of erasure
|
||||
|
||||
\begin{code}
|
||||
cong₃ : ∀ {A B C D : Set} (f : A → B → C → D) {s t u v x y} →
|
||||
s ≡ t → u ≡ v → x ≡ y → f s u x ≡ f t v y
|
||||
cong₃ f refl refl refl = refl
|
||||
|
||||
lookup-lemma : ∀ {Γ x A} → (⊢x : Γ ∋ x `: A) → lookup ⊢x ≡ x
|
||||
lookup-lemma Z = refl
|
||||
lookup-lemma (S w≢ ⊢w) = lookup-lemma ⊢w
|
||||
|
||||
erase-lemma : ∀ {Γ M A} → (⊢M : Γ ⊢ M `: A) → erase ⊢M ≡ M
|
||||
erase-lemma (Ax ⊢x) = cong `_ (lookup-lemma ⊢x)
|
||||
erase-lemma (⊢λ {x = x} ⊢N) = cong (`λ x `→_) (erase-lemma ⊢N)
|
||||
erase-lemma (⊢L · ⊢M) = cong₂ _·_ (erase-lemma ⊢L) (erase-lemma ⊢M)
|
||||
erase-lemma (⊢zero) = refl
|
||||
erase-lemma (⊢suc ⊢M) = cong `suc_ (erase-lemma ⊢M)
|
||||
erase-lemma (⊢pred ⊢M) = cong `pred_ (erase-lemma ⊢M)
|
||||
erase-lemma (⊢if0 ⊢L ⊢M ⊢N) = cong₃ `if0_then_else_
|
||||
(erase-lemma ⊢L) (erase-lemma ⊢M) (erase-lemma ⊢N)
|
||||
erase-lemma (⊢Y ⊢M) = cong `Y_ (erase-lemma ⊢M)
|
||||
\end{code}
|
||||
|
||||
|
||||
## Substitution
|
||||
|
||||
### Lists as sets
|
||||
|
||||
\begin{code}
|
||||
open Collections (Id) (_≟_)
|
||||
\end{code}
|
||||
|
||||
### Free variables
|
||||
|
||||
\begin{code}
|
||||
free : Term → List Id
|
||||
free (` x) = [ x ]
|
||||
free (`λ x `→ N) = free N \\ x
|
||||
free (L · M) = free L ++ free M
|
||||
free (`zero) = []
|
||||
free (`suc M) = free M
|
||||
free (`pred M) = free M
|
||||
free (`if0 L then M else N) = free L ++ free M ++ free N
|
||||
free (`Y M) = free M
|
||||
\end{code}
|
||||
|
||||
### Identifier maps
|
||||
|
||||
\begin{code}
|
||||
∅ : Id → Term
|
||||
∅ x = ` x
|
||||
|
||||
infixl 5 _,_↦_
|
||||
|
||||
_,_↦_ : (Id → Term) → Id → Term → (Id → Term)
|
||||
(ρ , x ↦ M) w with w ≟ x
|
||||
... | yes _ = M
|
||||
... | no _ = ρ w
|
||||
\end{code}
|
||||
|
||||
### Substitution
|
||||
|
||||
\begin{code}
|
||||
subst : (Id → Term) → Term → Term
|
||||
subst ρ (` x) = ρ x
|
||||
subst ρ (`λ x `→ N) = `λ x `→ subst (ρ , x ↦ ` x) N
|
||||
subst ρ (L · M) = subst ρ L · subst ρ M
|
||||
subst ρ (`zero) = `zero
|
||||
subst ρ (`suc M) = `suc (subst ρ M)
|
||||
subst ρ (`pred M) = `pred (subst ρ M)
|
||||
subst ρ (`if0 L then M else N)
|
||||
= `if0 (subst ρ L) then (subst ρ M) else (subst ρ N)
|
||||
subst ρ (`Y M) = `Y (subst ρ M)
|
||||
|
||||
_[_:=_] : Term → Id → Term → Term
|
||||
N [ x := M ] = subst (∅ , x ↦ M) N
|
||||
\end{code}
|
||||
|
||||
### Testing substitution
|
||||
|
||||
\begin{code}
|
||||
_ : (` "s" · ` "s" · ` "z") [ "z" := `zero ] ≡ (` "s" · ` "s" · `zero)
|
||||
_ = refl
|
||||
|
||||
_ : (` "s" · ` "s" · ` "z") [ "s" := (`λ "m" `→ `suc ` "m") ] [ "z" := `zero ]
|
||||
≡ (`λ "m" `→ `suc ` "m") · (`λ "m" `→ `suc ` "m") · `zero
|
||||
_ = refl
|
||||
|
||||
_ : (`λ "m" `→ ` "m" · ` "n") [ "n" := ` "p" · ` "q" ]
|
||||
≡ `λ "m" `→ ` "m" · (` "p" · ` "q")
|
||||
_ = refl
|
||||
|
||||
_ : subst (∅ , "m" ↦ two , "n" ↦ four) (` "m" · ` "n") ≡ (two · four)
|
||||
_ = refl
|
||||
\end{code}
|
||||
|
||||
|
||||
## Values
|
||||
|
||||
\begin{code}
|
||||
data Value : Term → Set where
|
||||
|
||||
Zero :
|
||||
----------
|
||||
Value `zero
|
||||
|
||||
Suc : ∀ {V}
|
||||
→ Value V
|
||||
--------------
|
||||
→ Value (`suc V)
|
||||
|
||||
Fun : ∀ {x N}
|
||||
---------------
|
||||
→ Value (`λ x `→ N)
|
||||
\end{code}
|
||||
|
||||
## Reduction
|
||||
|
||||
\begin{code}
|
||||
infix 4 _⟶_
|
||||
|
||||
data _⟶_ : Term → Term → Set where
|
||||
|
||||
ξ-·₁ : ∀ {L L′ M}
|
||||
→ L ⟶ L′
|
||||
-----------------
|
||||
→ L · M ⟶ L′ · M
|
||||
|
||||
ξ-·₂ : ∀ {V M M′}
|
||||
→ Value V
|
||||
→ M ⟶ M′
|
||||
-----------------
|
||||
→ V · M ⟶ V · M′
|
||||
|
||||
β-→ : ∀ {x N V}
|
||||
→ Value V
|
||||
---------------------------------
|
||||
→ (`λ x `→ N) · V ⟶ N [ x := V ]
|
||||
|
||||
ξ-suc : ∀ {M M′}
|
||||
→ M ⟶ M′
|
||||
-------------------
|
||||
→ `suc M ⟶ `suc M′
|
||||
|
||||
ξ-pred : ∀ {M M′}
|
||||
→ M ⟶ M′
|
||||
---------------------
|
||||
→ `pred M ⟶ `pred M′
|
||||
|
||||
β-pred-zero :
|
||||
----------------------
|
||||
`pred `zero ⟶ `zero
|
||||
|
||||
β-pred-suc : ∀ {V}
|
||||
→ Value V
|
||||
---------------------
|
||||
→ `pred (`suc V) ⟶ V
|
||||
|
||||
ξ-if0 : ∀ {L L′ M N}
|
||||
→ L ⟶ L′
|
||||
-----------------------------------------------
|
||||
→ `if0 L then M else N ⟶ `if0 L′ then M else N
|
||||
|
||||
β-if0-zero : ∀ {M N}
|
||||
-------------------------------
|
||||
→ `if0 `zero then M else N ⟶ M
|
||||
|
||||
β-if0-suc : ∀ {V M N}
|
||||
→ Value V
|
||||
----------------------------------
|
||||
→ `if0 (`suc V) then M else N ⟶ N
|
||||
|
||||
ξ-Y : ∀ {M M′}
|
||||
→ M ⟶ M′
|
||||
---------------
|
||||
→ `Y M ⟶ `Y M′
|
||||
|
||||
β-Y : ∀ {F x N}
|
||||
→ F ≡ `λ x `→ N
|
||||
-------------------------
|
||||
→ `Y F ⟶ N [ x := `Y F ]
|
||||
\end{code}
|
||||
|
||||
## Reflexive and transitive closure
|
||||
|
||||
\begin{code}
|
||||
infix 2 _⟶*_
|
||||
infix 1 begin_
|
||||
infixr 2 _⟶⟨_⟩_
|
||||
infix 3 _∎
|
||||
|
||||
data _⟶*_ : Term → Term → Set where
|
||||
|
||||
_∎ : ∀ (M : Term)
|
||||
-------------
|
||||
→ M ⟶* M
|
||||
|
||||
_⟶⟨_⟩_ : ∀ (L : Term) {M N}
|
||||
→ L ⟶ M
|
||||
→ M ⟶* N
|
||||
---------
|
||||
→ L ⟶* N
|
||||
|
||||
begin_ : ∀ {M N} → (M ⟶* N) → (M ⟶* N)
|
||||
begin M⟶*N = M⟶*N
|
||||
\end{code}
|
||||
|
||||
## Sample execution
|
||||
|
||||
\begin{code}
|
||||
_ : plus · two · two ⟶* (`suc (`suc (`suc (`suc `zero))))
|
||||
_ =
|
||||
begin
|
||||
plus · two · two
|
||||
⟶⟨ ξ-·₁ (ξ-·₁ (β-Y refl)) ⟩
|
||||
(`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
|
||||
`suc (plus · (`pred (` "m")) · (` "n")))) · two · two
|
||||
⟶⟨ ξ-·₁ (β-→ (Suc (Suc Zero))) ⟩
|
||||
(`λ "n" `→ `if0 two then ` "n" else
|
||||
`suc (plus · (`pred two) · (` "n"))) · two
|
||||
⟶⟨ β-→ (Suc (Suc Zero)) ⟩
|
||||
`if0 two then two else
|
||||
`suc (plus · (`pred two) · two)
|
||||
⟶⟨ β-if0-suc (Suc Zero) ⟩
|
||||
`suc (plus · (`pred two) · two)
|
||||
⟶⟨ ξ-suc (ξ-·₁ (ξ-·₁ (β-Y refl))) ⟩
|
||||
`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
|
||||
`suc (plus · (`pred (` "m")) · (` "n")))) · (`pred two) · two)
|
||||
⟶⟨ ξ-suc (ξ-·₁ (ξ-·₂ Fun (β-pred-suc (Suc Zero)))) ⟩
|
||||
`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
|
||||
`suc (plus · (`pred (` "m")) · (` "n")))) · (`suc `zero) · two)
|
||||
⟶⟨ ξ-suc (ξ-·₁ (β-→ (Suc Zero))) ⟩
|
||||
`suc ((`λ "n" `→ `if0 `suc `zero then ` "n" else
|
||||
`suc (plus · (`pred (`suc `zero)) · (` "n")))) · two
|
||||
⟶⟨ ξ-suc (β-→ (Suc (Suc Zero))) ⟩
|
||||
`suc (`if0 `suc `zero then two else
|
||||
`suc (plus · (`pred (`suc `zero)) · two))
|
||||
⟶⟨ ξ-suc (β-if0-suc Zero) ⟩
|
||||
`suc (`suc (plus · (`pred (`suc `zero)) · two))
|
||||
⟶⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ (β-Y refl)))) ⟩
|
||||
`suc (`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
|
||||
`suc (plus · (`pred (` "m")) · (` "n")))) · (`pred (`suc `zero)) · two))
|
||||
⟶⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₂ Fun (β-pred-suc Zero)))) ⟩
|
||||
`suc (`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
|
||||
`suc (plus · (`pred (` "m")) · (` "n")))) · `zero · two))
|
||||
⟶⟨ ξ-suc (ξ-suc (ξ-·₁ (β-→ Zero))) ⟩
|
||||
`suc (`suc ((`λ "n" `→ `if0 `zero then ` "n" else
|
||||
`suc (plus · (`pred `zero) · (` "n"))) · two))
|
||||
⟶⟨ ξ-suc (ξ-suc (β-→ (Suc (Suc Zero)))) ⟩
|
||||
`suc (`suc (`if0 `zero then two else
|
||||
`suc (plus · (`pred `zero) · two)))
|
||||
⟶⟨ ξ-suc (ξ-suc β-if0-zero) ⟩
|
||||
`suc (`suc (`suc (`suc `zero)))
|
||||
∎
|
||||
\end{code}
|
||||
|
||||
## Values do not reduce
|
||||
|
||||
Values do not reduce.
|
||||
\begin{code}
|
||||
Val-⟶ : ∀ {M N} → Value M → ¬ (M ⟶ N)
|
||||
Val-⟶ Fun ()
|
||||
Val-⟶ Zero ()
|
||||
Val-⟶ (Suc VM) (ξ-suc M⟶N) = Val-⟶ VM M⟶N
|
||||
\end{code}
|
||||
|
||||
As a corollary, terms that reduce are not values.
|
||||
\begin{code}
|
||||
⟶-Val : ∀ {M N} → (M ⟶ N) → ¬ Value M
|
||||
⟶-Val M⟶N VM = Val-⟶ VM M⟶N
|
||||
\end{code}
|
||||
|
||||
## Reduction is deterministic
|
||||
|
||||
\begin{code}
|
||||
det : ∀ {M M′ M″}
|
||||
→ (M ⟶ M′)
|
||||
→ (M ⟶ M″)
|
||||
----------
|
||||
→ M′ ≡ M″
|
||||
det (ξ-·₁ L⟶L′) (ξ-·₁ L⟶L″) = cong₂ _·_ (det L⟶L′ L⟶L″) refl
|
||||
det (ξ-·₁ L⟶L′) (ξ-·₂ VL _) = ⊥-elim (Val-⟶ VL L⟶L′)
|
||||
det (ξ-·₁ L⟶L′) (β-→ _) = ⊥-elim (Val-⟶ Fun L⟶L′)
|
||||
det (ξ-·₂ VL _) (ξ-·₁ L⟶L″) = ⊥-elim (Val-⟶ VL L⟶L″)
|
||||
det (ξ-·₂ _ M⟶M′) (ξ-·₂ _ M⟶M″) = cong₂ _·_ refl (det M⟶M′ M⟶M″)
|
||||
det (ξ-·₂ _ M⟶M′) (β-→ VM) = ⊥-elim (Val-⟶ VM M⟶M′)
|
||||
det (β-→ VM) (ξ-·₁ L⟶L″) = ⊥-elim (Val-⟶ Fun L⟶L″)
|
||||
det (β-→ VM) (ξ-·₂ _ M⟶M″) = ⊥-elim (Val-⟶ VM M⟶M″)
|
||||
det (β-→ _) (β-→ _) = refl
|
||||
det (ξ-suc M⟶M′) (ξ-suc M⟶M″) = cong `suc_ (det M⟶M′ M⟶M″)
|
||||
det (ξ-pred M⟶M′) (ξ-pred M⟶M″) = cong `pred_ (det M⟶M′ M⟶M″)
|
||||
det (ξ-pred M⟶M′) β-pred-zero = ⊥-elim (Val-⟶ Zero M⟶M′)
|
||||
det (ξ-pred M⟶M′) (β-pred-suc VM) = ⊥-elim (Val-⟶ (Suc VM) M⟶M′)
|
||||
det β-pred-zero (ξ-pred M⟶M′) = ⊥-elim (Val-⟶ Zero M⟶M′)
|
||||
det β-pred-zero β-pred-zero = refl
|
||||
det (β-pred-suc VM) (ξ-pred M⟶M′) = ⊥-elim (Val-⟶ (Suc VM) M⟶M′)
|
||||
det (β-pred-suc _) (β-pred-suc _) = refl
|
||||
det (ξ-if0 L⟶L′) (ξ-if0 L⟶L″) = cong₃ `if0_then_else_ (det L⟶L′ L⟶L″) refl refl
|
||||
det (ξ-if0 L⟶L′) β-if0-zero = ⊥-elim (Val-⟶ Zero L⟶L′)
|
||||
det (ξ-if0 L⟶L′) (β-if0-suc VL) = ⊥-elim (Val-⟶ (Suc VL) L⟶L′)
|
||||
det β-if0-zero (ξ-if0 L⟶L″) = ⊥-elim (Val-⟶ Zero L⟶L″)
|
||||
det β-if0-zero β-if0-zero = refl
|
||||
det (β-if0-suc VL) (ξ-if0 L⟶L″) = ⊥-elim (Val-⟶ (Suc VL) L⟶L″)
|
||||
det (β-if0-suc _) (β-if0-suc _) = refl
|
||||
det (ξ-Y M⟶M′) (ξ-Y M⟶M″) = cong `Y_ (det M⟶M′ M⟶M″)
|
||||
det (ξ-Y M⟶M′) (β-Y refl) = ⊥-elim (Val-⟶ Fun M⟶M′)
|
||||
det (β-Y refl) (ξ-Y M⟶M″) = ⊥-elim (Val-⟶ Fun M⟶M″)
|
||||
det (β-Y refl) (β-Y refl) = refl
|
||||
\end{code}
|
||||
|
||||
Almost half the lines in the above proof are redundant, for example
|
||||
|
||||
det (ξ-·₁ L⟶L′) (ξ-·₂ VL _) = ⊥-elim (Val-⟶ VL L⟶L′)
|
||||
det (ξ-·₂ VL _) (ξ-·₁ L⟶L″) = ⊥-elim (Val-⟶ VL L⟶L″)
|
||||
|
||||
are essentially identical. What we might like to do is delete the
|
||||
redundant lines and add
|
||||
|
||||
det M⟶M′ M⟶M″ = sym (det M⟶M″ M⟶M′)
|
||||
|
||||
to the bottom of the proof. But this does not work. The termination
|
||||
checker complains, because the arguments have merely switched order
|
||||
and neither is smaller.
|
||||
|
||||
## Canonical forms
|
||||
|
||||
\begin{code}
|
||||
data Canonical : Term → Type → Set where
|
||||
|
||||
Zero :
|
||||
-------------------
|
||||
Canonical `zero `ℕ
|
||||
|
||||
Suc : ∀ {V}
|
||||
→ Canonical V `ℕ
|
||||
----------------------
|
||||
→ Canonical (`suc V) `ℕ
|
||||
|
||||
Fun : ∀ {x N A B}
|
||||
→ ε , x `: A ⊢ N `: B
|
||||
-------------------------------
|
||||
→ Canonical (`λ x `→ N) (A `→ B)
|
||||
\end{code}
|
||||
|
||||
## Canonical forms lemma
|
||||
|
||||
Every typed value is canonical.
|
||||
|
||||
\begin{code}
|
||||
canonical : ∀ {V A}
|
||||
→ ε ⊢ V `: A
|
||||
→ Value V
|
||||
-------------
|
||||
→ Canonical V A
|
||||
canonical ⊢zero Zero = Zero
|
||||
canonical (⊢suc ⊢V) (Suc VV) = Suc (canonical ⊢V VV)
|
||||
canonical (⊢λ ⊢N) Fun = Fun ⊢N
|
||||
\end{code}
|
||||
|
||||
Every canonical form has a type and a value.
|
||||
|
||||
\begin{code}
|
||||
type : ∀ {V A}
|
||||
→ Canonical V A
|
||||
--------------
|
||||
→ ε ⊢ V `: A
|
||||
type Zero = ⊢zero
|
||||
type (Suc CV) = ⊢suc (type CV)
|
||||
type (Fun {x = x} ⊢N) = ⊢λ ⊢N
|
||||
|
||||
value : ∀ {V A}
|
||||
→ Canonical V A
|
||||
-------------
|
||||
→ Value V
|
||||
value Zero = Zero
|
||||
value (Suc CV) = Suc (value CV)
|
||||
value (Fun ⊢N) = Fun
|
||||
\end{code}
|
||||
|
||||
## Progress
|
||||
|
||||
\begin{code}
|
||||
data Progress (M : Term) (A : Type) : Set where
|
||||
step : ∀ {N}
|
||||
→ M ⟶ N
|
||||
----------
|
||||
→ Progress M A
|
||||
done :
|
||||
Canonical M A
|
||||
-------------
|
||||
→ Progress M A
|
||||
|
||||
progress : ∀ {M A} → ε ⊢ M `: A → Progress M A
|
||||
progress (Ax ())
|
||||
progress (⊢λ ⊢N) = done (Fun ⊢N)
|
||||
progress (⊢L · ⊢M) with progress ⊢L
|
||||
... | step L⟶L′ = step (ξ-·₁ L⟶L′)
|
||||
... | done (Fun _) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-·₂ Fun M⟶M′)
|
||||
... | done CM = step (β-→ (value CM))
|
||||
progress ⊢zero = done Zero
|
||||
progress (⊢suc ⊢M) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-suc M⟶M′)
|
||||
... | done CM = done (Suc CM)
|
||||
progress (⊢pred ⊢M) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-pred M⟶M′)
|
||||
... | done Zero = step β-pred-zero
|
||||
... | done (Suc CM) = step (β-pred-suc (value CM))
|
||||
progress (⊢if0 ⊢L ⊢M ⊢N) with progress ⊢L
|
||||
... | step L⟶L′ = step (ξ-if0 L⟶L′)
|
||||
... | done Zero = step β-if0-zero
|
||||
... | done (Suc CM) = step (β-if0-suc (value CM))
|
||||
progress (⊢Y ⊢M) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-Y M⟶M′)
|
||||
... | done (Fun _) = step (β-Y refl)
|
||||
\end{code}
|
||||
|
||||
|
||||
## Preservation
|
||||
|
||||
### Domain of an environment
|
||||
|
||||
\begin{code}
|
||||
{-
|
||||
dom : Env → List Id
|
||||
dom ε = []
|
||||
dom (Γ , x `: A) = x ∷ dom Γ
|
||||
|
||||
dom-lemma : ∀ {Γ y B} → Γ ∋ y `: B → y ∈ dom Γ
|
||||
dom-lemma Z = here
|
||||
dom-lemma (S x≢y ⊢y) = there (dom-lemma ⊢y)
|
||||
|
||||
free-lemma : ∀ {Γ M A} → Γ ⊢ M `: A → free M ⊆ dom Γ
|
||||
free-lemma (Ax ⊢x) w∈ with w∈
|
||||
... | here = dom-lemma ⊢x
|
||||
... | there ()
|
||||
free-lemma {Γ} (⊢λ {N = N} ⊢N) = ∷-to-\\ (free-lemma ⊢N)
|
||||
free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
||||
... | inj₁ ∈L = free-lemma ⊢L ∈L
|
||||
... | inj₂ ∈M = free-lemma ⊢M ∈M
|
||||
free-lemma ⊢zero ()
|
||||
free-lemma (⊢suc ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
free-lemma (⊢pred ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
free-lemma (⊢if0 ⊢L ⊢M ⊢N) w∈
|
||||
with ++-to-⊎ w∈
|
||||
... | inj₁ ∈L = free-lemma ⊢L ∈L
|
||||
... | inj₂ ∈MN with ++-to-⊎ ∈MN
|
||||
... | inj₁ ∈M = free-lemma ⊢M ∈M
|
||||
... | inj₂ ∈N = free-lemma ⊢N ∈N
|
||||
free-lemma (⊢Y ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
-}
|
||||
\end{code}
|
||||
|
||||
### Renaming
|
||||
|
||||
\begin{code}
|
||||
⊢rename : ∀ {Γ Δ}
|
||||
→ (∀ {x A} → Γ ∋ x `: A → Δ ∋ x `: A)
|
||||
--------------------------------------------------
|
||||
→ (∀ {M A} → Γ ⊢ M `: A → Δ ⊢ M `: A)
|
||||
⊢rename ⊢σ (Ax ⊢x) = Ax (⊢σ ⊢x)
|
||||
⊢rename {Γ} {Δ} ⊢σ (⊢λ {x = x} {N = N} {A = A} ⊢N)
|
||||
= ⊢λ (⊢rename {Γ′} {Δ′} ⊢σ′ ⊢N)
|
||||
where
|
||||
Γ′ = Γ , x `: A
|
||||
Δ′ = Δ , x `: A
|
||||
|
||||
⊢σ′ : ∀ {w B} → Γ′ ∋ w `: B → Δ′ ∋ w `: B
|
||||
⊢σ′ Z = Z
|
||||
⊢σ′ (S w≢ ⊢w) = S w≢ (⊢σ ⊢w)
|
||||
|
||||
⊢rename ⊢σ (⊢L · ⊢M) = ⊢rename ⊢σ ⊢L · ⊢rename ⊢σ ⊢M
|
||||
⊢rename ⊢σ (⊢zero) = ⊢zero
|
||||
⊢rename ⊢σ (⊢suc ⊢M) = ⊢suc (⊢rename ⊢σ ⊢M)
|
||||
⊢rename ⊢σ (⊢pred ⊢M) = ⊢pred (⊢rename ⊢σ ⊢M)
|
||||
⊢rename ⊢σ (⊢if0 ⊢L ⊢M ⊢N)
|
||||
= ⊢if0 (⊢rename ⊢σ ⊢L) (⊢rename ⊢σ ⊢M) (⊢rename ⊢σ ⊢N)
|
||||
⊢rename ⊢σ (⊢Y ⊢M) = ⊢Y (⊢rename ⊢σ ⊢M)
|
||||
\end{code}
|
||||
|
||||
|
||||
### Substitution preserves types
|
||||
|
||||
\begin{code}
|
||||
-- trivial : Set
|
||||
-- trivial = ∀ ρ x → ρ x ≡ ` x ⊎ closed (ρ x)
|
||||
|
||||
⊢subst : ∀ {Γ Δ ρ}
|
||||
-- → (∀ {x A} → Γ ∋ x `: A → trivial ρ x)
|
||||
→ (∀ {x A} → Γ ∋ x `: A → Δ ⊢ ρ x `: A)
|
||||
-------------------------------------------------
|
||||
→ (∀ {M A} → Γ ⊢ M `: A → Δ ⊢ subst ρ M `: A)
|
||||
⊢subst ⊢ρ (Ax ⊢x) = ⊢ρ ⊢x
|
||||
⊢subst {Γ} {Δ} {ρ} ⊢ρ (⊢λ {x = x} {N = N} {A = A} ⊢N)
|
||||
= ⊢λ {x = x} {A = A} (⊢subst {Γ′} {Δ′} {ρ′} ⊢ρ′ ⊢N)
|
||||
where
|
||||
Γ′ = Γ , x `: A
|
||||
Δ′ = Δ , x `: A
|
||||
ρ′ = ρ , x ↦ ` x
|
||||
|
||||
⊢σ : ∀ {w C} → Δ ∋ w `: C → Δ′ ∋ w `: C
|
||||
⊢σ ⊢w = S {!!} ⊢w
|
||||
|
||||
⊢ρ′ : ∀ {w C} → Γ′ ∋ w `: C → Δ′ ⊢ ρ′ w `: C
|
||||
⊢ρ′ {w} Z with w ≟ x
|
||||
... | yes _ = Ax Z
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
⊢ρ′ {w} (S w≢ ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ = ⊢rename {Δ} {Δ′} ⊢σ (⊢ρ ⊢w)
|
||||
|
||||
⊢subst ⊢ρ (⊢L · ⊢M) = ⊢subst ⊢ρ ⊢L · ⊢subst ⊢ρ ⊢M
|
||||
⊢subst ⊢ρ ⊢zero = ⊢zero
|
||||
⊢subst ⊢ρ (⊢suc ⊢M) = ⊢suc (⊢subst ⊢ρ ⊢M)
|
||||
⊢subst ⊢ρ (⊢pred ⊢M) = ⊢pred (⊢subst ⊢ρ ⊢M)
|
||||
⊢subst ⊢ρ (⊢if0 ⊢L ⊢M ⊢N)
|
||||
= ⊢if0 (⊢subst ⊢ρ ⊢L) (⊢subst ⊢ρ ⊢M) (⊢subst ⊢ρ ⊢N)
|
||||
⊢subst ⊢ρ (⊢Y ⊢M) = ⊢Y (⊢subst ⊢ρ ⊢M)
|
||||
\end{code}
|
||||
|
||||
Let's look at examples. Assume `M` is closed. Example 1.
|
||||
|
||||
subst (∅ , "x" ↦ M) (`λ "y" `→ ` "x") ≡ `λ "y" `→ M
|
||||
|
||||
Example 2.
|
||||
|
||||
subst (∅ , "y" ↦ N , "x" ↦ M) (`λ "y" `→ ` "x" · ` "y")
|
||||
≡
|
||||
`λ "y" `→ subst (∅ , "y" ↦ ` N , "x" ↦ M , "y" ↦ ` "y") (` "x" · ` "y")
|
||||
≡
|
||||
`λ "y" `→ (M · ` "y")
|
||||
|
||||
Before I wrote: "The hypotheses of the theorem appear to be violated. Drat!"
|
||||
But let's assume that ``M `: A``, ``N `: B``, and the lambda bound `y` has type `C`.
|
||||
Then ``Γ ∋ y `: B`` will not hold for the extended `ρ` because of interference
|
||||
by the earlier `y`. So I'm not sure the hypothesis is violated.
|
||||
|
||||
|
||||
|
||||
\begin{code}
|
||||
⊢substitution : ∀ {Γ x A N B M}
|
||||
→ Γ , x `: A ⊢ N `: B
|
||||
→ Γ ⊢ M `: A
|
||||
----------------------
|
||||
→ Γ ⊢ N [ x := M ] `: B
|
||||
⊢substitution {Γ} {x} {A} {N} {B} {M} ⊢N ⊢M =
|
||||
⊢subst {Γ′} {Γ} {ρ} ⊢ρ {N} {B} ⊢N
|
||||
where
|
||||
Γ′ = Γ , x `: A
|
||||
ρ = ∅ , x ↦ M
|
||||
⊢ρ : ∀ {w B} → Γ′ ∋ w `: B → Γ ⊢ ρ w `: B
|
||||
⊢ρ {w} Z with w ≟ x
|
||||
... | yes _ = ⊢M
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
⊢ρ {w} (S w≢ ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ = Ax ⊢w
|
||||
\end{code}
|
||||
|
||||
### Preservation
|
||||
|
||||
\begin{code}
|
||||
preservation : ∀ {Γ M N A}
|
||||
→ Γ ⊢ M `: A
|
||||
→ M ⟶ N
|
||||
---------
|
||||
→ Γ ⊢ N `: A
|
||||
preservation (Ax ⊢x) ()
|
||||
preservation (⊢λ ⊢N) ()
|
||||
preservation (⊢L · ⊢M) (ξ-·₁ L⟶) = preservation ⊢L L⟶ · ⊢M
|
||||
preservation (⊢V · ⊢M) (ξ-·₂ _ M⟶) = ⊢V · preservation ⊢M M⟶
|
||||
preservation ((⊢λ ⊢N) · ⊢W) (β-→ _) = ⊢substitution ⊢N ⊢W
|
||||
preservation (⊢zero) ()
|
||||
preservation (⊢suc ⊢M) (ξ-suc M⟶) = ⊢suc (preservation ⊢M M⟶)
|
||||
preservation (⊢pred ⊢M) (ξ-pred M⟶) = ⊢pred (preservation ⊢M M⟶)
|
||||
preservation (⊢pred ⊢zero) (β-pred-zero) = ⊢zero
|
||||
preservation (⊢pred (⊢suc ⊢M)) (β-pred-suc _) = ⊢M
|
||||
preservation (⊢if0 ⊢L ⊢M ⊢N) (ξ-if0 L⟶) = ⊢if0 (preservation ⊢L L⟶) ⊢M ⊢N
|
||||
preservation (⊢if0 ⊢zero ⊢M ⊢N) β-if0-zero = ⊢M
|
||||
preservation (⊢if0 (⊢suc ⊢V) ⊢M ⊢N) (β-if0-suc _) = ⊢N
|
||||
preservation (⊢Y ⊢M) (ξ-Y M⟶) = ⊢Y (preservation ⊢M M⟶)
|
||||
preservation (⊢Y (⊢λ ⊢N)) (β-Y refl) = ⊢substitution ⊢N (⊢Y (⊢λ ⊢N))
|
||||
\end{code}
|
||||
|
||||
## Normalise
|
||||
|
||||
\begin{code}
|
||||
data Normalise {M A} (⊢M : ε ⊢ M `: A) : Set where
|
||||
out-of-gas : ∀ {N} → M ⟶* N → ε ⊢ N `: A → Normalise ⊢M
|
||||
normal : ∀ {V} → ℕ → Canonical V A → M ⟶* V → Normalise ⊢M
|
||||
|
||||
normalise : ∀ {L A} → ℕ → (⊢L : ε ⊢ L `: A) → Normalise ⊢L
|
||||
normalise {L} zero ⊢L = out-of-gas (L ∎) ⊢L
|
||||
normalise {L} (suc m) ⊢L with progress ⊢L
|
||||
... | done CL = normal (suc m) CL (L ∎)
|
||||
... | step L⟶M with preservation ⊢L L⟶M
|
||||
... | ⊢M with normalise m ⊢M
|
||||
... | out-of-gas M⟶*N ⊢N = out-of-gas (L ⟶⟨ L⟶M ⟩ M⟶*N) ⊢N
|
||||
... | normal n CV M⟶*V = normal n CV (L ⟶⟨ L⟶M ⟩ M⟶*V)
|
||||
\end{code}
|
||||
|
|
@ -14,13 +14,16 @@ Agda:
|
|||
|
||||
\begin{code}
|
||||
{-
|
||||
abcdefghijklmnopqrstuvwxyz
|
||||
ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
||||
αβγδεφικλμνωπψρστυχξζ
|
||||
ΑΒΓΔΕΦΙΚΛΜΝΩΠΨΡΣΤΥΧΞΖ
|
||||
0123456789
|
||||
⁰¹²³⁴⁵⁶⁷⁸⁹
|
||||
₀₁₂₃₄₅₆₇₈₉
|
||||
abcdefghijklmnopqrstuvwxyz|
|
||||
ABCDEFGHIJKLMNOPQRSTUVWXYZ|
|
||||
ᵃᵇᶜᵈᵉᶠᵍʰⁱʲᵏˡᵐⁿᵒᵖ ʳˢᵗᵘᵛʷˣʸᶻ|
|
||||
ᴬᴮ ᴰᴱ ᴳᴴᴵᴶᴷᴸᴹᴺᴼᴾ ᴿ ᵀᵁⱽᵂ |
|
||||
ₐ ₑ ᵢⱼ ₒ ᵣ ᵤ ₓ |
|
||||
αβγδεφικλμνωπψρστυχξζ|
|
||||
ΑΒΓΔΕΦΙΚΛΜΝΩΠΨΡΣΤΥΧΞΖ|
|
||||
0123456789|
|
||||
⁰¹²³⁴⁵⁶⁷⁸⁹|
|
||||
₀₁₂₃₄₅₆₇₈₉|
|
||||
𝕒𝕓𝕔𝕕𝕖𝕗𝕘𝕙𝕚𝕛
|
||||
𝑎𝑏𝑐𝑑𝑒𝑓𝑔𝑖𝑗𝑘
|
||||
------
|
||||
|
@ -34,18 +37,24 @@ ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
|||
------------
|
||||
⌊⌋⌈⌉
|
||||
----
|
||||
→→→→
|
||||
↦↦↦↦
|
||||
↠↠↠↠
|
||||
-}
|
||||
\end{code}
|
||||
|
||||
Indented code:
|
||||
|
||||
abcdefghijklmnopqrstuvwxyz
|
||||
ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
||||
αβγδεφικλμνωπψρστυχξζ
|
||||
ΑΒΓΔΕΦΙΚΛΜΝΩΠΨΡΣΤΥΧΞΖ
|
||||
0123456789
|
||||
⁰¹²³⁴⁵⁶⁷⁸⁹
|
||||
₀₁₂₃₄₅₆₇₈₉
|
||||
abcdefghijklmnopqrstuvwxyz|
|
||||
ABCDEFGHIJKLMNOPQRSTUVWXYZ|
|
||||
ᵃᵇᶜᵈᵉᶠᵍʰⁱʲᵏˡᵐⁿᵒᵖ ʳˢᵗᵘᵛʷˣʸᶻ|
|
||||
ᴬᴮ ᴰᴱ ᴳᴴᴵᴶᴷᴸᴹᴺᴼᴾ ᴿ ᵀᵁⱽᵂ |
|
||||
ₐ ₑ ᵢⱼ ₒ ᵣ ᵤ ₓ |
|
||||
αβγδεφικλμνωπψρστυχξζ|
|
||||
ΑΒΓΔΕΦΙΚΛΜΝΩΠΨΡΣΤΥΧΞΖ|
|
||||
0123456789|
|
||||
⁰¹²³⁴⁵⁶⁷⁸⁹|
|
||||
₀₁₂₃₄₅₆₇₈₉|
|
||||
𝕒𝕓𝕔𝕕𝕖𝕗𝕘𝕙𝕚𝕛
|
||||
𝑎𝑏𝑐𝑑𝑒𝑓𝑔𝑖𝑗𝑘
|
||||
------
|
||||
|
@ -59,3 +68,6 @@ Indented code:
|
|||
------------
|
||||
⌊⌋⌈⌉
|
||||
----
|
||||
→→→→
|
||||
↦↦↦↦
|
||||
↠↠↠↠
|
||||
|
|
|
@ -375,7 +375,6 @@ data _↠_ : Term → Term → Set where
|
|||
------------
|
||||
→ L ↠ N
|
||||
|
||||
|
||||
## Normalisation
|
||||
|
||||
\begin{code}
|
||||
|
|
Loading…
Reference in a new issue