removed extend from Typed

This commit is contained in:
wadler 2018-04-14 16:27:55 -03:00
parent b0a2c244b0
commit 947105aca9

View file

@ -311,24 +311,6 @@ dom-lemma (S x≢y ⊢y) = there (dom-lemma ⊢y)
⊢rename ⊢ρ (L · M) = ⊢rename ⊢ρ L · ⊢rename ⊢ρ M ⊢rename ⊢ρ (L · M) = ⊢rename ⊢ρ L · ⊢rename ⊢ρ M
\end{code} \end{code}
### Extending environment
The following can be used to shorten the definition that substitution preserves types,
but it actually makes the proof longer and more complex, so is probably not worth it.
\begin{code}
extend : ∀ {Γ Δ ρ x y A M} → (∀ {z C} → Δ ∋ z ⦂ C → y ≢ z) → (Δ , y ⦂ A ⊢ M ⦂ A) →
(∀ {z C} → Γ ∋ z ⦂ C → Δ ⊢ ρ z ⦂ C) →
(∀ {z C} → Γ , x ⦂ A ∋ z ⦂ C → Δ , y ⦂ A ⊢ (ρ , x ↦ M) z ⦂ C)
extend {x = x} y≢ ⊢M ⊢ρ Z with x ≟ x
... | yes _ = ⊢M
... | no x≢x = ⊥-elim (x≢x refl)
extend {Δ = Δ} {x = x} {y = y} {A = A} y≢ ⊢M ⊢ρ {z} (S x≢z ⊢z) with x ≟ z
... | yes x≡z = ⊥-elim (x≢z x≡z)
... | no _ = ⊢rename {Δ} {Δ , y ⦂ A} ⊢weaken (⊢ρ ⊢z)
where
⊢weaken : ∀ {z C} → Δ ∋ z ⦂ C → Δ , y ⦂ A ∋ z ⦂ C
⊢weaken ⊢z = S (y≢ ⊢z) ⊢z
\end{code}
### Substitution preserves types ### Substitution preserves types
@ -348,15 +330,12 @@ extend {Δ = Δ} {x = x} {y = y} {A = A} y≢ ⊢M ⊢ρ {z} (S x≢z ⊢z) with
⊆xs : dom Δ′ ⊆ xs ⊆xs : dom Δ′ ⊆ xs
⊆xs = ∷⊆ ⊆xs ⊆xs = ∷⊆ ⊆xs
y-lemma : ∀ {z C} → Δ ∋ z ⦂ C → y ≢ z y : ∀ {z C} → Δ ∋ z ⦂ C → y ≢ z
y-lemma ⊢z = fresh-lemma (⊆xs (dom-lemma ⊢z)) y≢ ⊢z = fresh-lemma (⊆xs (dom-lemma ⊢z))
⊢weaken : ∀ {z C} → Δ ∋ z ⦂ C → Δ′ ∋ z ⦂ C ⊢weaken : ∀ {z C} → Δ ∋ z ⦂ C → Δ′ ∋ z ⦂ C
⊢weaken ⊢z = S (y-lemma ⊢z) ⊢z ⊢weaken ⊢z = S (y≢ ⊢z) ⊢z
⊢ρ′ : ∀ {z C} → Γ′ ∋ z ⦂ C → Δ′ ⊢ ρ z ⦂ C
⊢ρ′ = extend y-lemma ⌊ Z ⌋ ⊢ρ
{-
⊢ρ′ : ∀ {z C} → Γ′ ∋ z ⦂ C → Δ′ ⊢ ρ z ⦂ C ⊢ρ′ : ∀ {z C} → Γ′ ∋ z ⦂ C → Δ′ ⊢ ρ z ⦂ C
⊢ρ′ Z with x ≟ x ⊢ρ′ Z with x ≟ x
... | yes _ = ⌊ Z ⌋ ... | yes _ = ⌊ Z ⌋
@ -364,7 +343,6 @@ extend {Δ = Δ} {x = x} {y = y} {A = A} y≢ ⊢M ⊢ρ {z} (S x≢z ⊢z) with
⊢ρ′ {z} (S x≢z ⊢z) with x ≟ z ⊢ρ′ {z} (S x≢z ⊢z) with x ≟ z
... | yes x≡z = ⊥-elim (x≢z x≡z) ... | yes x≡z = ⊥-elim (x≢z x≡z)
... | no _ = ⊢rename {Δ} {Δ′} ⊢weaken (⊢ρ ⊢z) ... | no _ = ⊢rename {Δ} {Δ′} ⊢weaken (⊢ρ ⊢z)
-}
⊢subst ⊆xs ⊢ρ (⊢L · ⊢M) = ⊢subst ⊆xs ⊢ρ ⊢L · ⊢subst ⊆xs ⊢ρ ⊢M ⊢subst ⊆xs ⊢ρ (⊢L · ⊢M) = ⊢subst ⊆xs ⊢ρ ⊢L · ⊢subst ⊆xs ⊢ρ ⊢M
\end{code} \end{code}