improved substitution
This commit is contained in:
parent
aefe4ba95c
commit
a25ebe0e97
2 changed files with 41 additions and 28 deletions
|
@ -400,19 +400,19 @@ Here is the formal definition of substitution by closed terms in Agda.
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
infix 9 _[_:=_]
|
infix 9 _[_:=_]
|
||||||
infix 9 _[[_][_:=_]]
|
infix 9 _⟨_⟩[_:=_]
|
||||||
|
|
||||||
_[_:=_] : Term → Id → Term → Term
|
_[_:=_] : Term → Id → Term → Term
|
||||||
|
|
||||||
_[[_][_:=_]] : Term → Id → Id → Term → Term
|
_⟨_⟩[_:=_] : Term → Id → Id → Term → Term
|
||||||
N [[ x ][ y := V ]] with x ≟ y
|
N ⟨ x ⟩[ y := V ] with x ≟ y
|
||||||
... | yes _ = N
|
... | yes _ = N
|
||||||
... | no _ = N [ y := V ]
|
... | no _ = N [ y := V ]
|
||||||
|
|
||||||
(` x) [ y := V ] with x ≟ y
|
(` x) [ y := V ] with x ≟ y
|
||||||
... | yes _ = V
|
... | yes _ = V
|
||||||
... | no _ = ` x
|
... | no _ = ` x
|
||||||
(ƛ x ⇒ N) [ y := V ] = ƛ x ⇒ N [[ x ][ y := V ]]
|
(ƛ x ⇒ N) [ y := V ] = ƛ x ⇒ N ⟨ x ⟩[ y := V ]
|
||||||
(L · M) [ y := V ] = (L [ y := V ]) · (M [ y := V ])
|
(L · M) [ y := V ] = (L [ y := V ]) · (M [ y := V ])
|
||||||
(`zero) [ y := V ] = `zero
|
(`zero) [ y := V ] = `zero
|
||||||
(`suc M) [ y := V ] = `suc (M [ y := V ])
|
(`suc M) [ y := V ] = `suc (M [ y := V ])
|
||||||
|
@ -420,8 +420,8 @@ N [[ x ][ y := V ]] with x ≟ y
|
||||||
[zero⇒ M
|
[zero⇒ M
|
||||||
|suc x ⇒ N ]) [ y := V ] = `case L [ y := V ]
|
|suc x ⇒ N ]) [ y := V ] = `case L [ y := V ]
|
||||||
[zero⇒ M [ y := V ]
|
[zero⇒ M [ y := V ]
|
||||||
|suc x ⇒ N [[ x ][ y := V ]] ]
|
|suc x ⇒ N ⟨ x ⟩[ y := V ] ]
|
||||||
(μ x ⇒ N) [ y := V ] = μ x ⇒ (N [[ x ][ y := V ]])
|
(μ x ⇒ N) [ y := V ] = μ x ⇒ (N ⟨ x ⟩[ y := V ])
|
||||||
|
|
||||||
|
|
||||||
{-
|
{-
|
||||||
|
|
|
@ -667,41 +667,54 @@ we require an arbitrary context `Γ`, as in the statement of the lemma.
|
||||||
|
|
||||||
Here is the formal statement and proof that substitution preserves types.
|
Here is the formal statement and proof that substitution preserves types.
|
||||||
\begin{code}
|
\begin{code}
|
||||||
subst : ∀ {Γ x N V A B}
|
subst : ∀ {Γ y N V A B}
|
||||||
→ ∅ ⊢ V ⦂ A
|
→ ∅ ⊢ V ⦂ B
|
||||||
→ Γ , x ⦂ A ⊢ N ⦂ B
|
→ Γ , y ⦂ B ⊢ N ⦂ A
|
||||||
--------------------
|
--------------------
|
||||||
→ Γ ⊢ N [ x := V ] ⦂ B
|
→ Γ ⊢ N [ y := V ] ⦂ A
|
||||||
|
|
||||||
|
substvar : ∀ {Γ x y V A B}
|
||||||
|
→ ∅ ⊢ V ⦂ B
|
||||||
|
→ Γ , y ⦂ B ∋ x ⦂ A
|
||||||
|
------------------------
|
||||||
|
→ Γ ⊢ (` x) [ y := V ] ⦂ A
|
||||||
|
|
||||||
{-
|
|
||||||
substbind : ∀ {Γ x y N V A B C}
|
substbind : ∀ {Γ x y N V A B C}
|
||||||
→ ∅ ⊢ V ⦂ B
|
→ ∅ ⊢ V ⦂ B
|
||||||
→ Γ , x ⦂ A , y ⦂ B ⊢ N ⦂ C
|
→ Γ , y ⦂ B , x ⦂ A ⊢ N ⦂ C
|
||||||
-----------------------------------
|
---------------------------------
|
||||||
→ Γ , x ⦂ A ⊢ N [[ x ][ y := V ]] ⦂ C
|
→ Γ , x ⦂ A ⊢ N ⟨ x ⟩[ y := V ] ⦂ C
|
||||||
substbind {x = x} {y = y} ⊢V ⊢N with x ≟ y
|
|
||||||
... | yes refl = drop ⊢N
|
|
||||||
... | no x≢y = subst ⊢V (swap x≢y ⊢N)
|
|
||||||
-}
|
|
||||||
|
|
||||||
subst {x = y} ⊢V (Ax {x = x} Z) with x ≟ y
|
subst ⊢V (Ax ∋x) = substvar ⊢V ∋x
|
||||||
... | yes refl = weaken ⊢V
|
subst ⊢V (⊢ƛ ⊢N) = ⊢ƛ (substbind ⊢V ⊢N)
|
||||||
... | no x≢y = ⊥-elim (x≢y refl)
|
|
||||||
subst {x = y} ⊢V (Ax {x = x} (S x≢y ∋x)) with x ≟ y
|
|
||||||
... | yes refl = ⊥-elim (x≢y refl)
|
|
||||||
... | no _ = Ax ∋x
|
|
||||||
subst {x = y} ⊢V (⊢ƛ {x = x} ⊢N) with x ≟ y
|
|
||||||
... | yes refl = ⊢ƛ (drop ⊢N)
|
|
||||||
... | no x≢y = ⊢ƛ (subst ⊢V (swap x≢y ⊢N))
|
|
||||||
subst ⊢V (⊢L · ⊢M) = subst ⊢V ⊢L · subst ⊢V ⊢M
|
subst ⊢V (⊢L · ⊢M) = subst ⊢V ⊢L · subst ⊢V ⊢M
|
||||||
subst ⊢V ⊢zero = ⊢zero
|
subst ⊢V ⊢zero = ⊢zero
|
||||||
subst ⊢V (⊢suc ⊢M) = ⊢suc (subst ⊢V ⊢M)
|
subst ⊢V (⊢suc ⊢M) = ⊢suc (subst ⊢V ⊢M)
|
||||||
|
subst ⊢V (⊢case ⊢L ⊢M ⊢N) = ⊢case (subst ⊢V ⊢L) (subst ⊢V ⊢M) (substbind ⊢V ⊢N)
|
||||||
|
subst ⊢V (⊢μ ⊢N) = ⊢μ (substbind ⊢V ⊢N)
|
||||||
|
|
||||||
|
substvar {x = x} {y = y} ⊢V Z with x ≟ y
|
||||||
|
... | yes refl = weaken ⊢V
|
||||||
|
... | no x≢y = ⊥-elim (x≢y refl)
|
||||||
|
substvar {x = x} {y = y} ⊢V (S x≢y ∋x) with x ≟ y
|
||||||
|
... | yes refl = ⊥-elim (x≢y refl)
|
||||||
|
... | no _ = Ax ∋x
|
||||||
|
|
||||||
|
substbind {x = x} {y = y} ⊢V ⊢N with x ≟ y
|
||||||
|
... | yes refl = drop ⊢N
|
||||||
|
... | no x≢y = subst ⊢V (swap x≢y ⊢N)
|
||||||
|
|
||||||
|
{-
|
||||||
|
subst {x = y} ⊢V (⊢ƛ {x = x} ⊢N) with x ≟ y
|
||||||
|
... | yes refl = ⊢ƛ (drop ⊢N)
|
||||||
|
... | no x≢y = ⊢ƛ (subst ⊢V (swap x≢y ⊢N))
|
||||||
subst {x = y} ⊢V (⊢case {x = x} ⊢L ⊢M ⊢N) with x ≟ y
|
subst {x = y} ⊢V (⊢case {x = x} ⊢L ⊢M ⊢N) with x ≟ y
|
||||||
... | yes refl = ⊢case (subst ⊢V ⊢L) (subst ⊢V ⊢M) (drop ⊢N)
|
... | yes refl = ⊢case (subst ⊢V ⊢L) (subst ⊢V ⊢M) (drop ⊢N)
|
||||||
... | no x≢y = ⊢case (subst ⊢V ⊢L) (subst ⊢V ⊢M) (subst ⊢V (swap x≢y ⊢N))
|
... | no x≢y = ⊢case (subst ⊢V ⊢L) (subst ⊢V ⊢M) (subst ⊢V (swap x≢y ⊢N))
|
||||||
subst {x = y} ⊢V (⊢μ {x = x} ⊢M) with x ≟ y
|
subst {x = y} ⊢V (⊢μ {x = x} ⊢M) with x ≟ y
|
||||||
... | yes refl = ⊢μ (drop ⊢M)
|
... | yes refl = ⊢μ (drop ⊢M)
|
||||||
... | no x≢y = ⊢μ (subst ⊢V (swap x≢y ⊢M))
|
... | no x≢y = ⊢μ (subst ⊢V (swap x≢y ⊢M))
|
||||||
|
-}
|
||||||
|
|
||||||
|
|
||||||
{-
|
{-
|
||||||
|
|
Loading…
Reference in a new issue