backup morning Sun 15 Apr
This commit is contained in:
parent
d3c48c48e5
commit
a374c52178
2 changed files with 170 additions and 0 deletions
153
src/Streams.lagda
Normal file
153
src/Streams.lagda
Normal file
|
@ -0,0 +1,153 @@
|
||||||
|
---
|
||||||
|
title : "Streams: Streams and coinduction"
|
||||||
|
layout : page
|
||||||
|
permalink : /Streams
|
||||||
|
---
|
||||||
|
|
||||||
|
This chapter introduces streams and coinduction.
|
||||||
|
|
||||||
|
## Imports
|
||||||
|
|
||||||
|
\begin{code}
|
||||||
|
import Relation.Binary.PropositionalEquality as Eq
|
||||||
|
open Eq using (_≡_; refl; sym; trans; cong)
|
||||||
|
open Eq.≡-Reasoning
|
||||||
|
open import Isomorphism using (_≃_)
|
||||||
|
open import Coinduction using (∞; ♯_; ♭)
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
We assume [extensionality][extensionality].
|
||||||
|
\begin{code}
|
||||||
|
postulate
|
||||||
|
extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) → f ≡ g
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
[extensionality]: Equality/index.html#extensionality
|
||||||
|
|
||||||
|
|
||||||
|
## Streams
|
||||||
|
|
||||||
|
Lists are defined in Agda as follows.
|
||||||
|
\begin{code}
|
||||||
|
record Stream (A : Set) : Set where
|
||||||
|
coinductive
|
||||||
|
field
|
||||||
|
hd : A
|
||||||
|
tl : Stream A
|
||||||
|
|
||||||
|
open Stream
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
A constructor for streams may be defined via *co-pattern matching*.
|
||||||
|
\begin{code}
|
||||||
|
infixr 5 _∷_
|
||||||
|
|
||||||
|
_∷_ : ∀ {A : Set} → A → Stream A → Stream A
|
||||||
|
hd (x ∷ xs) = x
|
||||||
|
tl (x ∷ xs) = xs
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
\begin{code}
|
||||||
|
even : ∀ {A} → Stream A → Stream A
|
||||||
|
hd (even x) = hd x
|
||||||
|
tl (even x) = even (tl (tl x))
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
## Lifting
|
||||||
|
|
||||||
|
\begin{code}
|
||||||
|
record Lift (A : Set) : Set where
|
||||||
|
coinductive
|
||||||
|
field
|
||||||
|
force : A
|
||||||
|
|
||||||
|
open Lift
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
\begin{code}
|
||||||
|
delay : ∀ {A : Set} → A → Lift A
|
||||||
|
force (delay x) = x
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
## Alternative definition of stream
|
||||||
|
|
||||||
|
\begin{code}
|
||||||
|
data Stream′ (A : Set) : Set where
|
||||||
|
_∷′_ : A → ∞ (Stream′ A) → Stream′ A
|
||||||
|
|
||||||
|
hd′ : ∀ {A} → Stream′ A → A
|
||||||
|
hd′ (x ∷′ xs) = x
|
||||||
|
|
||||||
|
tl′ : ∀ {A} → Stream′ A → Stream′ A
|
||||||
|
tl′ (x ∷′ xs) = ♭ xs
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
## Maps between the two definitions
|
||||||
|
|
||||||
|
\begin{code}
|
||||||
|
to : ∀ {A} → Stream A → Stream′ A
|
||||||
|
to xs = hd xs ∷′ ♯ (to (tl xs))
|
||||||
|
|
||||||
|
from : ∀ {A} → Stream′ A → Stream A
|
||||||
|
hd (from (x ∷′ xs′)) = x
|
||||||
|
tl (from (x ∷′ xs′)) = from (♭ xs′)
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
Termination check does not succeed if I replace `∞`, `♯`, `♭` by `Lift`,
|
||||||
|
`delay`, `force`.
|
||||||
|
|
||||||
|
Trying to show full-blown isomorphism appears difficult.
|
||||||
|
|
||||||
|
## How to be lazy without even being odd
|
||||||
|
|
||||||
|
This is the approach hinted at by Abel in his [lecture].
|
||||||
|
|
||||||
|
[lecture]: http://cs.ioc.ee/~tarmo/tsem12/abel-slides.pdf
|
||||||
|
|
||||||
|
\begin{code}
|
||||||
|
record EStream (A : Set) : Set
|
||||||
|
data OStream (A : Set) : Set
|
||||||
|
|
||||||
|
record EStream (A : Set) where
|
||||||
|
coinductive
|
||||||
|
field
|
||||||
|
force : OStream A
|
||||||
|
|
||||||
|
open EStream
|
||||||
|
|
||||||
|
data OStream (A : Set) where
|
||||||
|
cons : A → EStream A → OStream A
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
Type `OStream` can also include a `nil` clause, if needed.
|
||||||
|
|
||||||
|
## Conversions between `Stream` and `EStream`.
|
||||||
|
|
||||||
|
\begin{code}
|
||||||
|
toE : ∀ {A} → Stream A → EStream A
|
||||||
|
force (toE xs) = cons (hd xs) (toE (tl xs))
|
||||||
|
|
||||||
|
fromE : ∀ {A} → EStream A → Stream A
|
||||||
|
hd (fromE xs′) with force xs′
|
||||||
|
... | cons x xs″ = x
|
||||||
|
tl (fromE xs′) with force xs′
|
||||||
|
... | cons x xs″ = fromE xs″
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
## Standard Library
|
||||||
|
|
||||||
|
Definitions similar to those in this chapter can be found in the standard library.
|
||||||
|
\begin{code}
|
||||||
|
\end{code}
|
||||||
|
The standard library version of `IsMonoid` differs from the
|
||||||
|
one given here, in that it is also parameterised on an equivalence relation.
|
||||||
|
|
||||||
|
|
||||||
|
## Unicode
|
||||||
|
|
||||||
|
This chapter uses the following unicode.
|
||||||
|
|
||||||
|
∷ U+2237 PROPORTION (\::)
|
||||||
|
⊗ U+2297 CIRCLED TIMES (\otimes)
|
||||||
|
∈ U+2208 ELEMENT OF (\in)
|
||||||
|
∉ U+2209 NOT AN ELEMENT OF (\inn)
|
17
src/extra/UntypedDB.lagda
Normal file
17
src/extra/UntypedDB.lagda
Normal file
|
@ -0,0 +1,17 @@
|
||||||
|
\begin{code}
|
||||||
|
open import Data.Nat (ℕ; zero; suc)
|
||||||
|
|
||||||
|
data Env : Set where
|
||||||
|
ε : Env
|
||||||
|
_,* : Env → Env
|
||||||
|
|
||||||
|
data _∋* : Env → Set where
|
||||||
|
Z : ∀ {Γ : Env} → Var (Γ ,*)
|
||||||
|
S : ∀ {Γ : Env} → Var Γ → Var (Γ ,*)
|
||||||
|
|
||||||
|
data _⊢* : Env → Set where
|
||||||
|
var : ∀ {Γ : Env} → Var Γ → Tm Γ
|
||||||
|
ƛ : Var (Γ ,*) → Var Γ
|
||||||
|
_·_ : Var Γ → Var Γ → Var Γ
|
||||||
|
|
||||||
|
\end{code}
|
Loading…
Reference in a new issue