added Lambda and LambdaProp
This commit is contained in:
parent
93d7706028
commit
a515aaf289
2 changed files with 1688 additions and 0 deletions
1026
src/Lambda.lagda
Normal file
1026
src/Lambda.lagda
Normal file
File diff suppressed because it is too large
Load diff
662
src/LambdaProp.lagda
Normal file
662
src/LambdaProp.lagda
Normal file
|
@ -0,0 +1,662 @@
|
|||
---
|
||||
title : "LambdaProp: Properties of Simply-Typed Lambda Calculus"
|
||||
layout : page
|
||||
permalink : /LambdaProp
|
||||
---
|
||||
|
||||
This chapter develops the fundamental theory of the Simply
|
||||
Typed Lambda Calculus, particularly progress and preservation.
|
||||
|
||||
## Imports
|
||||
|
||||
\begin{code}
|
||||
module LambdaProp where
|
||||
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
|
||||
open import Data.String using (String; _≟_)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.Product
|
||||
using (_×_; proj₁; proj₂; ∃; ∃-syntax)
|
||||
renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Function using (_∘_)
|
||||
open import StlcNew
|
||||
\end{code}
|
||||
|
||||
|
||||
## Canonical Forms
|
||||
|
||||
The first step in establishing basic properties of reduction and typing
|
||||
is to identify the possible _canonical forms_ (i.e., well-typed closed values)
|
||||
belonging to each type. For function types the canonical forms are lambda-abstractions,
|
||||
while for boolean types they are values `true` and `false`.
|
||||
|
||||
\begin{code}
|
||||
data canonical_for_ : Term → Type → Set where
|
||||
canonical-λ : ∀ {x A N B} → canonical (ƛ x ⇒ N) for (A ⇒ B)
|
||||
canonical-true : canonical true for 𝔹
|
||||
canonical-false : canonical false for 𝔹
|
||||
|
||||
canonical-forms : ∀ {L A} → ∅ ⊢ L ⦂ A → Value L → canonical L for A
|
||||
canonical-forms (Ax ()) ()
|
||||
canonical-forms (⇒-I ⊢N) value-λ = canonical-λ
|
||||
canonical-forms (⇒-E ⊢L ⊢M) ()
|
||||
canonical-forms 𝔹-I₁ value-true = canonical-true
|
||||
canonical-forms 𝔹-I₂ value-false = canonical-false
|
||||
canonical-forms (𝔹-E ⊢L ⊢M ⊢N) ()
|
||||
\end{code}
|
||||
|
||||
## Progress
|
||||
|
||||
As before, the _progress_ theorem tells us that closed, well-typed
|
||||
terms are not stuck: either a well-typed term can take a reduction
|
||||
step or it is a value.
|
||||
|
||||
\begin{code}
|
||||
data Progress (M : Term) : Set where
|
||||
steps : ∀ {N} → M ⟹ N → Progress M
|
||||
done : Value M → Progress M
|
||||
|
||||
progress : ∀ {M A} → ∅ ⊢ M ⦂ A → Progress M
|
||||
\end{code}
|
||||
|
||||
We give the proof in English first, then the formal version.
|
||||
|
||||
_Proof_: By induction on the derivation of `∅ ⊢ M ⦂ A`.
|
||||
|
||||
- The last rule of the derivation cannot be `Ax`,
|
||||
since a variable is never well typed in an empty context.
|
||||
|
||||
- If the last rule of the derivation is `⇒-I`, `𝔹-I₁`, or `𝔹-I₂`
|
||||
then, trivially, the term is a value.
|
||||
|
||||
- If the last rule of the derivation is `⇒-E`, then the term has the
|
||||
form `L · M` for some `L` and `M`, where we know that `L` and `M`
|
||||
are also well typed in the empty context, giving us two induction
|
||||
hypotheses. By the first induction hypothesis, either `L`
|
||||
can take a step or is a value.
|
||||
|
||||
- If `L` can take a step, then so can `L · M` by `ξ·₁`.
|
||||
|
||||
- If `L` is a value then consider `M`. By the second induction
|
||||
hypothesis, either `M` can take a step or is a value.
|
||||
|
||||
- If `M` can take a step, then so can `L · M` by `ξ·₂`.
|
||||
|
||||
- If `M` is a value, then since `L` is a value with a
|
||||
function type we know from the canonical forms lemma
|
||||
that it must be a lambda abstraction,
|
||||
and hence `L · M` can take a step by `βλ·`.
|
||||
|
||||
- If the last rule of the derivation is `𝔹-E`, then the term has
|
||||
the form `if L then M else N` where `L` has type `𝔹`.
|
||||
By the induction hypothesis, either `L` can take a step or is
|
||||
a value.
|
||||
|
||||
- If `L` can take a step, then so can `if L then M else N` by `ξif`.
|
||||
|
||||
- If `L` is a value, then since it has type boolean we know from
|
||||
the canonical forms lemma that it must be either `true` or
|
||||
`false`.
|
||||
|
||||
- If `L` is `true`, then `if L then M else N` steps by `βif-true`
|
||||
|
||||
- If `L` is `false`, then `if L then M else N` steps by `βif-false`
|
||||
|
||||
This completes the proof.
|
||||
|
||||
\begin{code}
|
||||
progress (Ax ())
|
||||
progress (⇒-I ⊢N) = done value-λ
|
||||
progress (⇒-E ⊢L ⊢M) with progress ⊢L
|
||||
... | steps L⟹L′ = steps (ξ·₁ L⟹L′)
|
||||
... | done valueL with progress ⊢M
|
||||
... | steps M⟹M′ = steps (ξ·₂ valueL M⟹M′)
|
||||
... | done valueM with canonical-forms ⊢L valueL
|
||||
... | canonical-λ = steps (βλ· valueM)
|
||||
progress 𝔹-I₁ = done value-true
|
||||
progress 𝔹-I₂ = done value-false
|
||||
progress (𝔹-E ⊢L ⊢M ⊢N) with progress ⊢L
|
||||
... | steps L⟹L′ = steps (ξif L⟹L′)
|
||||
... | done valueL with canonical-forms ⊢L valueL
|
||||
... | canonical-true = steps βif-true
|
||||
... | canonical-false = steps βif-false
|
||||
\end{code}
|
||||
|
||||
This code reads neatly in part because we consider the
|
||||
`steps` option before the `done` option. We could, of course,
|
||||
do it the other way around, but then the `...` abbreviation
|
||||
no longer works, and we will need to write out all the arguments
|
||||
in full. In general, the rule of thumb is to consider the easy case
|
||||
(here `steps`) before the hard case (here `done`).
|
||||
If you have two hard cases, you will have to expand out `...`
|
||||
or introduce subsidiary functions.
|
||||
|
||||
#### Exercise: 3 stars, optional (progress_from_term_ind)
|
||||
Show that progress can also be proved by induction on terms
|
||||
instead of induction on typing derivations.
|
||||
|
||||
\begin{code}
|
||||
postulate
|
||||
progress′ : ∀ M {A} → ∅ ⊢ M ⦂ A → Progress M
|
||||
\end{code}
|
||||
|
||||
## Preservation
|
||||
|
||||
The other half of the type soundness property is the preservation
|
||||
of types during reduction. For this, we need to develop
|
||||
technical machinery for reasoning about variables and
|
||||
substitution. Working from top to bottom (from the high-level
|
||||
property we are actually interested in to the lowest-level
|
||||
technical lemmas), the story goes like this:
|
||||
|
||||
- The _preservation theorem_ is proved by induction on a typing derivation.
|
||||
derivation, pretty much as we did in chapter [Types]({{ "Types" | relative_url }})
|
||||
|
||||
- The one case that is significantly different is the one for the
|
||||
`βλ·` rule, whose definition uses the substitution operation. To see that
|
||||
this step preserves typing, we need to know that the substitution itself
|
||||
does. So we prove a ...
|
||||
|
||||
- _substitution lemma_, stating that substituting a (closed) term
|
||||
`V` for a variable `x` in a term `N` preserves the type of `N`.
|
||||
The proof goes by induction on the form of `N` and requires
|
||||
looking at all the different cases in the definition of
|
||||
substitition. The lemma does not require that `V` be a value,
|
||||
though in practice we only substitute values. The tricky cases
|
||||
are the ones for variables and for function abstractions. In both
|
||||
cases, we discover that we need to take a term `V` that has been
|
||||
shown to be well-typed in some context `Γ` and consider the same
|
||||
term in a different context `Γ′`. For this we prove a ...
|
||||
|
||||
- _context invariance_ lemma, showing that typing is preserved
|
||||
under "inessential changes" to the context---a term `M`
|
||||
well typed in `Γ` is also well typed in `Γ′`, so long as
|
||||
all the free variables of `M` appear in both contexts.
|
||||
And finally, for this, we need a careful definition of ...
|
||||
|
||||
- _free variables_ of a term---i.e., those variables
|
||||
mentioned in a term and not bound in an enclosing
|
||||
lambda abstraction.
|
||||
|
||||
To make Agda happy, we need to formalize the story in the opposite
|
||||
order.
|
||||
|
||||
|
||||
### Free Occurrences
|
||||
|
||||
A variable `x` appears _free_ in a term `M` if `M` contains an
|
||||
occurrence of `x` that is not bound in an enclosing lambda abstraction.
|
||||
For example:
|
||||
|
||||
- Variable `x` appears free, but `f` does not, in ``ƛ "f" ⇒ # "f" · # "x"``.
|
||||
- Both `f` and `x` appear free in ``(ƛ "f" ⇒ # "f" · # "x") · # "f"``.
|
||||
Indeed, `f` appears both bound and free in this term.
|
||||
- No variables appear free in ``ƛ "f" ⇒ ƛ "x" ⇒ # "f" · # "x"``.
|
||||
|
||||
Formally:
|
||||
|
||||
\begin{code}
|
||||
data _∈_ : Id → Term → Set where
|
||||
free-# : ∀ {x} → x ∈ # x
|
||||
free-ƛ : ∀ {w x N} → w ≢ x → w ∈ N → w ∈ (ƛ x ⇒ N)
|
||||
free-·₁ : ∀ {w L M} → w ∈ L → w ∈ (L · M)
|
||||
free-·₂ : ∀ {w L M} → w ∈ M → w ∈ (L · M)
|
||||
free-if₁ : ∀ {w L M N} → w ∈ L → w ∈ (if L then M else N)
|
||||
free-if₂ : ∀ {w L M N} → w ∈ M → w ∈ (if L then M else N)
|
||||
free-if₃ : ∀ {w L M N} → w ∈ N → w ∈ (if L then M else N)
|
||||
\end{code}
|
||||
|
||||
A term in which no variables appear free is said to be _closed_.
|
||||
|
||||
\begin{code}
|
||||
_∉_ : Id → Term → Set
|
||||
x ∉ M = ¬ (x ∈ M)
|
||||
|
||||
closed : Term → Set
|
||||
closed M = ∀ {x} → x ∉ M
|
||||
\end{code}
|
||||
|
||||
Here are proofs corresponding to the first two examples above.
|
||||
|
||||
\begin{code}
|
||||
x≢f : "x" ≢ "f"
|
||||
x≢f ()
|
||||
|
||||
ex₃ : "x" ∈ (ƛ "f" ⇒ # "f" · # "x")
|
||||
ex₃ = free-ƛ x≢f (free-·₂ free-#)
|
||||
|
||||
ex₄ : "f" ∉ (ƛ "f" ⇒ # "f" · # "x")
|
||||
ex₄ (free-ƛ f≢f _) = f≢f refl
|
||||
\end{code}
|
||||
|
||||
|
||||
#### Exercise: 1 star (free-in)
|
||||
Prove formally the remaining examples given above.
|
||||
|
||||
\begin{code}
|
||||
postulate
|
||||
ex₅ : "x" ∈ ((ƛ "f" ⇒ # "f" · # "x") · # "f")
|
||||
ex₆ : "f" ∈ ((ƛ "f" ⇒ # "f" · # "x") · # "f")
|
||||
ex₇ : "x" ∉ (ƛ "f" ⇒ ƛ "x" ⇒ # "f" · # "x")
|
||||
ex₈ : "f" ∉ (ƛ "f" ⇒ ƛ "x" ⇒ # "f" · # "x")
|
||||
\end{code}
|
||||
|
||||
Although `_∈_` may appear to be a low-level technical definition,
|
||||
understanding it is crucial to understanding the properties of
|
||||
substitution, which are really the crux of the lambda calculus.
|
||||
|
||||
### Substitution
|
||||
|
||||
To prove that substitution preserves typing, we first need a technical
|
||||
lemma connecting free variables and typing contexts. If variable `x`
|
||||
appears free in term `M`, and if `M` is well typed in context `Γ`,
|
||||
then `Γ` must assign a type to `x`.
|
||||
|
||||
\begin{code}
|
||||
free-lemma : ∀ {w M A Γ} → w ∈ M → Γ ⊢ M ⦂ A → ∃[ B ](Γ ∋ w ⦂ B)
|
||||
free-lemma free-# (Ax {Γ} {w} {B} ∋w) = ⟨ B , ∋w ⟩
|
||||
free-lemma (free-ƛ {w} {x} w≢ ∈N) (⇒-I ⊢N) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ with free-lemma ∈N ⊢N
|
||||
... | ⟨ B , Z ⟩ = ⊥-elim (w≢ refl)
|
||||
... | ⟨ B , S _ ∋w ⟩ = ⟨ B , ∋w ⟩
|
||||
free-lemma (free-·₁ ∈L) (⇒-E ⊢L ⊢M) = free-lemma ∈L ⊢L
|
||||
free-lemma (free-·₂ ∈M) (⇒-E ⊢L ⊢M) = free-lemma ∈M ⊢M
|
||||
free-lemma (free-if₁ ∈L) (𝔹-E ⊢L ⊢M ⊢N) = free-lemma ∈L ⊢L
|
||||
free-lemma (free-if₂ ∈M) (𝔹-E ⊢L ⊢M ⊢N) = free-lemma ∈M ⊢M
|
||||
free-lemma (free-if₃ ∈N) (𝔹-E ⊢L ⊢M ⊢N) = free-lemma ∈N ⊢N
|
||||
\end{code}
|
||||
|
||||
<!--
|
||||
A subtle point: if the first argument of `free-λ` was of type
|
||||
`x ≢ w` rather than of type `w ≢ x`, then the type of the
|
||||
term `Γx≡C` would not simplify properly; instead, one would need
|
||||
to rewrite with the symmetric equivalence.
|
||||
-->
|
||||
|
||||
As a second technical lemma, we need that any term `M` which is well
|
||||
typed in the empty context is closed (has no free variables).
|
||||
|
||||
#### Exercise: 2 stars, optional (∅⊢-closed)
|
||||
|
||||
\begin{code}
|
||||
postulate
|
||||
∅⊢-closed : ∀ {M A} → ∅ ⊢ M ⦂ A → closed M
|
||||
\end{code}
|
||||
|
||||
<div class="hidden">
|
||||
\begin{code}
|
||||
∅-empty : ∀ {x A} → ¬ (∅ ∋ x ⦂ A)
|
||||
∅-empty ()
|
||||
|
||||
∅⊢-closed′ : ∀ {M A} → ∅ ⊢ M ⦂ A → closed M
|
||||
∅⊢-closed′ ⊢M ∈M with free-lemma ∈M ⊢M
|
||||
... | ⟨ B , ∋w ⟩ = ∅-empty ∋w
|
||||
\end{code}
|
||||
</div>
|
||||
|
||||
Sometimes, when we have a proof `Γ ⊢ M ⦂ A`, we will need to
|
||||
replace `Γ` by a different context `Γ′`. When is it safe
|
||||
to do this? Intuitively, the only variables we care about
|
||||
in the context are those that appear free in `M`. So long
|
||||
as the two contexts agree on those variables, one can be
|
||||
exchanged for the other.
|
||||
|
||||
\begin{code}
|
||||
ext : ∀ {Γ Δ}
|
||||
→ (∀ {w B} → Γ ∋ w ⦂ B → Δ ∋ w ⦂ B)
|
||||
-----------------------------------------------------
|
||||
→ (∀ {w x A B} → Γ , x ⦂ A ∋ w ⦂ B → Δ , x ⦂ A ∋ w ⦂ B)
|
||||
ext σ Z = Z
|
||||
ext σ (S w≢ ∋w) = S w≢ (σ ∋w)
|
||||
|
||||
rename : ∀ {Γ Δ}
|
||||
→ (∀ {w B} → Γ ∋ w ⦂ B → Δ ∋ w ⦂ B)
|
||||
----------------------------------
|
||||
→ (∀ {M A} → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A)
|
||||
rename σ (Ax ∋w) = Ax (σ ∋w)
|
||||
rename σ (⇒-I ⊢N) = ⇒-I (rename (ext σ) ⊢N)
|
||||
rename σ (⇒-E ⊢L ⊢M) = ⇒-E (rename σ ⊢L) (rename σ ⊢M)
|
||||
rename σ 𝔹-I₁ = 𝔹-I₁
|
||||
rename σ 𝔹-I₂ = 𝔹-I₂
|
||||
rename σ (𝔹-E ⊢L ⊢M ⊢N) = 𝔹-E (rename σ ⊢L) (rename σ ⊢M) (rename σ ⊢N)
|
||||
\end{code}
|
||||
|
||||
We have three important corrolaries. First,
|
||||
any closed term can be weakened to any context.
|
||||
\begin{code}
|
||||
rename-∅ : ∀ {Γ M A}
|
||||
→ ∅ ⊢ M ⦂ A
|
||||
----------
|
||||
→ Γ ⊢ M ⦂ A
|
||||
rename-∅ {Γ} ⊢M = rename σ ⊢M
|
||||
where
|
||||
σ : ∀ {z C}
|
||||
→ ∅ ∋ z ⦂ C
|
||||
---------
|
||||
→ Γ ∋ z ⦂ C
|
||||
σ ()
|
||||
\end{code}
|
||||
|
||||
Second, if the last two variable in a context are
|
||||
equal, the term can be renamed to drop the redundant one.
|
||||
\begin{code}
|
||||
rename-≡ : ∀ {Γ x M A B C}
|
||||
→ Γ , x ⦂ A , x ⦂ B ⊢ M ⦂ C
|
||||
--------------------------
|
||||
→ Γ , x ⦂ B ⊢ M ⦂ C
|
||||
rename-≡ {Γ} {x} {M} {A} {B} {C} ⊢M = rename σ ⊢M
|
||||
where
|
||||
σ : ∀ {z C}
|
||||
→ Γ , x ⦂ A , x ⦂ B ∋ z ⦂ C
|
||||
-------------------------
|
||||
→ Γ , x ⦂ B ∋ z ⦂ C
|
||||
σ Z = Z
|
||||
σ (S z≢x Z) = ⊥-elim (z≢x refl)
|
||||
σ (S z≢x (S z≢y ∋z)) = S z≢x ∋z
|
||||
\end{code}
|
||||
|
||||
Third, if the last two variable in a context differ,
|
||||
the term can be renamed to flip their order.
|
||||
\begin{code}
|
||||
rename-≢ : ∀ {Γ x y M A B C}
|
||||
→ x ≢ y
|
||||
→ Γ , y ⦂ A , x ⦂ B ⊢ M ⦂ C
|
||||
--------------------------
|
||||
→ Γ , x ⦂ B , y ⦂ A ⊢ M ⦂ C
|
||||
rename-≢ {Γ} {x} {y} {M} {A} {B} {C} x≢y ⊢M = rename σ ⊢M
|
||||
where
|
||||
σ : ∀ {z C}
|
||||
→ Γ , y ⦂ A , x ⦂ B ∋ z ⦂ C
|
||||
--------------------------
|
||||
→ Γ , x ⦂ B , y ⦂ A ∋ z ⦂ C
|
||||
σ Z = S (λ{refl → x≢y refl}) Z
|
||||
σ (S z≢x Z) = Z
|
||||
σ (S z≢x (S z≢y ∋z)) = S z≢y (S z≢x ∋z)
|
||||
\end{code}
|
||||
|
||||
|
||||
Now we come to the conceptual heart of the proof that reduction
|
||||
preserves types---namely, the observation that _substitution_
|
||||
preserves types.
|
||||
|
||||
Formally, the _Substitution Lemma_ says this: Suppose we
|
||||
have a term `N` with a free variable `x`, where `N` has
|
||||
type `B` under the assumption that `x` has some type `A`.
|
||||
Also, suppose that we have some other term `V`,
|
||||
where `V` has type `A`. Then, since `V` satisfies
|
||||
the assumption we made about `x` when typing `N`, we should be
|
||||
able to substitute `V` for each of the occurrences of `x` in `N`
|
||||
and obtain a new term that still has type `B`.
|
||||
|
||||
_Lemma_: If `Γ , x ⦂ A ⊢ N ⦂ B` and `∅ ⊢ V ⦂ A`, then
|
||||
`Γ ⊢ (N [ x := V ]) ⦂ B`.
|
||||
|
||||
One technical subtlety in the statement of the lemma is that we assume
|
||||
`V` is closed; it has type `A` in the _empty_ context. This
|
||||
assumption simplifies the `λ` case of the proof because the context
|
||||
invariance lemma then tells us that `V` has type `A` in any context at
|
||||
all---we don't have to worry about free variables in `V` clashing with
|
||||
the variable being introduced into the context by `λ`. It is possible
|
||||
to prove the theorem under the more general assumption `Γ ⊢ V ⦂ A`,
|
||||
but the proof is more difficult.
|
||||
|
||||
<!--
|
||||
Intuitively, the substitution lemma says that substitution and typing can
|
||||
be done in either order: we can either assign types to the terms
|
||||
`N` and `V` separately (under suitable contexts) and then combine
|
||||
them using substitution, or we can substitute first and then
|
||||
assign a type to `N [ x := V ]`---the result is the same either
|
||||
way.
|
||||
-->
|
||||
|
||||
\begin{code}
|
||||
subst : ∀ {Γ x N V A B}
|
||||
→ Γ , x ⦂ A ⊢ N ⦂ B
|
||||
→ ∅ ⊢ V ⦂ A
|
||||
-----------------------
|
||||
→ Γ ⊢ N [ x := V ] ⦂ B
|
||||
|
||||
subst {Γ} {y} {# x} (Ax Z) ⊢V with x ≟ y
|
||||
... | yes refl = rename-∅ ⊢V
|
||||
... | no x≢y = ⊥-elim (x≢y refl)
|
||||
subst {Γ} {y} {# x} (Ax (S x≢y ∋x)) ⊢V with x ≟ y
|
||||
... | yes refl = ⊥-elim (x≢y refl)
|
||||
... | no _ = Ax ∋x
|
||||
subst {Γ} {y} {ƛ x ⇒ N} (⇒-I ⊢N) ⊢V with x ≟ y
|
||||
... | yes refl = ⇒-I (rename-≡ ⊢N)
|
||||
... | no x≢y = ⇒-I (subst (rename-≢ x≢y ⊢N) ⊢V)
|
||||
subst (⇒-E ⊢L ⊢M) ⊢V = ⇒-E (subst ⊢L ⊢V) (subst ⊢M ⊢V)
|
||||
subst 𝔹-I₁ ⊢V = 𝔹-I₁
|
||||
subst 𝔹-I₂ ⊢V = 𝔹-I₂
|
||||
subst (𝔹-E ⊢L ⊢M ⊢N) ⊢V = 𝔹-E (subst ⊢L ⊢V) (subst ⊢M ⊢V) (subst ⊢N ⊢V)
|
||||
\end{code}
|
||||
|
||||
|
||||
### Main Theorem
|
||||
|
||||
We now have the tools we need to prove preservation: if a closed
|
||||
term `M` has type `A` and takes a step to `N`, then `N`
|
||||
is also a closed term with type `A`. In other words, small-step
|
||||
reduction preserves types.
|
||||
|
||||
\begin{code}
|
||||
preservation : ∀ {M N A} → ∅ ⊢ M ⦂ A → M ⟹ N → ∅ ⊢ N ⦂ A
|
||||
preservation (Ax ())
|
||||
preservation (⇒-I ⊢N) ()
|
||||
preservation (⇒-E ⊢L ⊢M) (ξ·₁ L⟹L′) with preservation ⊢L L⟹L′
|
||||
... | ⊢L′ = ⇒-E ⊢L′ ⊢M
|
||||
preservation (⇒-E ⊢L ⊢M) (ξ·₂ valueL M⟹M′) with preservation ⊢M M⟹M′
|
||||
... | ⊢M′ = ⇒-E ⊢L ⊢M′
|
||||
preservation (⇒-E (⇒-I ⊢N) ⊢V) (βλ· valueV) = subst ⊢N ⊢V
|
||||
preservation 𝔹-I₁ ()
|
||||
preservation 𝔹-I₂ ()
|
||||
preservation (𝔹-E ⊢L ⊢M ⊢N) (ξif L⟹L′) with preservation ⊢L L⟹L′
|
||||
... | ⊢L′ = 𝔹-E ⊢L′ ⊢M ⊢N
|
||||
preservation (𝔹-E 𝔹-I₁ ⊢M ⊢N) βif-true = ⊢M
|
||||
preservation (𝔹-E 𝔹-I₂ ⊢M ⊢N) βif-false = ⊢N
|
||||
\end{code}
|
||||
|
||||
|
||||
#### Exercise: 2 stars, recommended (subject_expansion_stlc)
|
||||
|
||||
<!--
|
||||
An exercise in the [Types]({{ "Types" | relative_url }}) chapter asked about the
|
||||
subject expansion property for the simple language of arithmetic and boolean
|
||||
expressions. Does this property hold for STLC? That is, is it always the case
|
||||
that, if `M ==> N` and `∅ ⊢ N ⦂ A`, then `∅ ⊢ M ⦂ A`? It is easy to find a
|
||||
counter-example with conditionals, find one not involving conditionals.
|
||||
-->
|
||||
|
||||
We say that `M` _reduces_ to `N` if `M ⟹ N`,
|
||||
and that `M` _expands_ to `N` if `N ⟹ M`.
|
||||
The preservation property is sometimes called _subject reduction_.
|
||||
Its opposite is _subject expansion_, which holds if
|
||||
`M ==> N` and `∅ ⊢ N ⦂ A`, then `∅ ⊢ M ⦂ A`.
|
||||
Find two counter-examples to subject expansion, one
|
||||
with conditionals and one not involving conditionals.
|
||||
|
||||
## Type Soundness
|
||||
|
||||
#### Exercise: 2 stars, optional (type_soundness)
|
||||
|
||||
Put progress and preservation together and show that a well-typed
|
||||
term can _never_ reach a stuck state.
|
||||
|
||||
\begin{code}
|
||||
Normal : Term → Set
|
||||
Normal M = ∀ {N} → ¬ (M ⟹ N)
|
||||
|
||||
Stuck : Term → Set
|
||||
Stuck M = Normal M × ¬ Value M
|
||||
|
||||
postulate
|
||||
Soundness : ∀ {M N A} → ∅ ⊢ M ⦂ A → M ⟹* N → ¬ (Stuck N)
|
||||
\end{code}
|
||||
|
||||
<div class="hidden">
|
||||
\begin{code}
|
||||
Soundness′ : ∀ {M N A} → ∅ ⊢ M ⦂ A → M ⟹* N → ¬ (Stuck N)
|
||||
Soundness′ ⊢M (M ∎) ⟨ ¬M⟹N , ¬ValueM ⟩ with progress ⊢M
|
||||
... | steps M⟹N = ¬M⟹N M⟹N
|
||||
... | done ValueM = ¬ValueM ValueM
|
||||
Soundness′ ⊢L (L ⟹⟨ L⟹M ⟩ M⟹*N) = Soundness′ ⊢M M⟹*N
|
||||
where
|
||||
⊢M = preservation ⊢L L⟹M
|
||||
\end{code}
|
||||
</div>
|
||||
|
||||
|
||||
## Additional Exercises
|
||||
|
||||
#### Exercise: 1 star (progress_preservation_statement)
|
||||
|
||||
Without peeking at their statements above, write down the progress
|
||||
and preservation theorems for the simply typed lambda-calculus.
|
||||
|
||||
#### Exercise: 2 stars (stlc_variation1)
|
||||
|
||||
Suppose we add a new term `zap` with the following reduction rule
|
||||
|
||||
--------- (ST_Zap)
|
||||
M ⟹ zap
|
||||
|
||||
and the following typing rule:
|
||||
|
||||
----------- (T_Zap)
|
||||
Γ ⊢ zap : A
|
||||
|
||||
Which of the following properties of the STLC remain true in
|
||||
the presence of these rules? For each property, write either
|
||||
"remains true" or "becomes false." If a property becomes
|
||||
false, give a counterexample.
|
||||
|
||||
- Determinism of `step`
|
||||
|
||||
- Progress
|
||||
|
||||
- Preservation
|
||||
|
||||
|
||||
#### Exercise: 2 stars (stlc_variation2)
|
||||
|
||||
Suppose instead that we add a new term `foo` with the following
|
||||
reduction rules:
|
||||
|
||||
------------------- (ST_Foo1)
|
||||
(λ x ⇒ # x) ⟹ foo
|
||||
|
||||
------------ (ST_Foo2)
|
||||
foo ⟹ true
|
||||
|
||||
Which of the following properties of the STLC remain true in
|
||||
the presence of this rule? For each one, write either
|
||||
"remains true" or else "becomes false." If a property becomes
|
||||
false, give a counterexample.
|
||||
|
||||
- Determinism of `step`
|
||||
|
||||
- Progress
|
||||
|
||||
- Preservation
|
||||
|
||||
#### Exercise: 2 stars (stlc_variation3)
|
||||
|
||||
Suppose instead that we remove the rule `ξ·₁` from the `⟹`
|
||||
relation. Which of the following properties of the STLC remain
|
||||
true in the absence of this rule? For each one, write either
|
||||
"remains true" or else "becomes false." If a property becomes
|
||||
false, give a counterexample.
|
||||
|
||||
- Determinism of `step`
|
||||
|
||||
- Progress
|
||||
|
||||
- Preservation
|
||||
|
||||
#### Exercise: 2 stars, optional (stlc_variation4)
|
||||
Suppose instead that we add the following new rule to the
|
||||
reduction relation:
|
||||
|
||||
---------------------------------- (ST_FunnyIfTrue)
|
||||
(if true then t_1 else t_2) ⟹ true
|
||||
|
||||
Which of the following properties of the STLC remain true in
|
||||
the presence of this rule? For each one, write either
|
||||
"remains true" or else "becomes false." If a property becomes
|
||||
false, give a counterexample.
|
||||
|
||||
- Determinism of `step`
|
||||
|
||||
- Progress
|
||||
|
||||
- Preservation
|
||||
|
||||
|
||||
#### Exercise: 2 stars, optional (stlc_variation5)
|
||||
|
||||
Suppose instead that we add the following new rule to the typing
|
||||
relation:
|
||||
|
||||
Γ ⊢ L ⦂ 𝔹 ⇒ 𝔹 ⇒ 𝔹
|
||||
Γ ⊢ M ⦂ 𝔹
|
||||
------------------------------ (T_FunnyApp)
|
||||
Γ ⊢ L · M ⦂ 𝔹
|
||||
|
||||
Which of the following properties of the STLC remain true in
|
||||
the presence of this rule? For each one, write either
|
||||
"remains true" or else "becomes false." If a property becomes
|
||||
false, give a counterexample.
|
||||
|
||||
- Determinism of `step`
|
||||
|
||||
- Progress
|
||||
|
||||
- Preservation
|
||||
|
||||
|
||||
|
||||
#### Exercise: 2 stars, optional (stlc_variation6)
|
||||
Suppose instead that we add the following new rule to the typing
|
||||
relation:
|
||||
|
||||
Γ ⊢ L ⦂ 𝔹
|
||||
Γ ⊢ M ⦂ 𝔹
|
||||
--------------------- (T_FunnyApp')
|
||||
Γ ⊢ L · M ⦂ 𝔹
|
||||
|
||||
Which of the following properties of the STLC remain true in
|
||||
the presence of this rule? For each one, write either
|
||||
"remains true" or else "becomes false." If a property becomes
|
||||
false, give a counterexample.
|
||||
|
||||
- Determinism of `step`
|
||||
|
||||
- Progress
|
||||
|
||||
- Preservation
|
||||
|
||||
|
||||
|
||||
#### Exercise: 2 stars, optional (stlc_variation7)
|
||||
|
||||
Suppose we add the following new rule to the typing relation
|
||||
of the STLC:
|
||||
|
||||
-------------------- (T_FunnyAbs)
|
||||
∅ ⊢ λ[ x ⦂ 𝔹 ] N ⦂ 𝔹
|
||||
|
||||
Which of the following properties of the STLC remain true in
|
||||
the presence of this rule? For each one, write either
|
||||
"remains true" or else "becomes false." If a property becomes
|
||||
false, give a counterexample.
|
||||
|
||||
- Determinism of `step`
|
||||
|
||||
- Progress
|
||||
|
||||
- Preservation
|
||||
|
||||
|
Loading…
Reference in a new issue