improved definition of fresh

This commit is contained in:
wadler 2018-04-16 14:07:48 -03:00
parent 952c1d4850
commit a6c9b3e009

View file

@ -14,7 +14,7 @@ module Typed where
import Relation.Binary.PropositionalEquality as Eq import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_) open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
open import Data.Empty using (⊥; ⊥-elim) open import Data.Empty using (⊥; ⊥-elim)
open import Data.List using (List; []; _∷_; [_]; _++_; foldr; filter) open import Data.List using (List; []; _∷_; [_]; _++_; map; foldr; filter)
open import Data.List.Any using (Any; here; there) open import Data.List.Any using (Any; here; there)
open import Data.Nat using (; zero; suc; _+_; _∸_; _≤_; _⊔_; _≟_) open import Data.Nat using (; zero; suc; _+_; _∸_; _≤_; _⊔_; _≟_)
open import Data.Nat.Properties using (≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; 1+n≰n) open import Data.Nat.Properties using (≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; 1+n≰n)
@ -25,7 +25,6 @@ open import Function using (_∘_)
open import Function.Equality using (≡-setoid) open import Function.Equality using (≡-setoid)
open import Function.Equivalence using (_⇔_; equivalence) open import Function.Equivalence using (_⇔_; equivalence)
open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Nullary.Decidable using (map; From-no; from-no)
open import Relation.Nullary.Negation using (contraposition; ¬?) open import Relation.Nullary.Negation using (contraposition; ¬?)
open import Relation.Nullary.Product using (_×-dec_) open import Relation.Nullary.Product using (_×-dec_)
\end{code} \end{code}
@ -285,11 +284,11 @@ free (L · M) = free L free M
\begin{code} \begin{code}
fresh : List Id → Id fresh : List Id → Id
fresh = suc ∘ foldr _⊔_ 0 fresh = foldr _⊔_ 0 ∘ map suc
⊔-lemma : ∀ {x xs} → x ∈ xs → x ≤ foldr _⊔_ 0 xs ⊔-lemma : ∀ {x xs} → x ∈ xs → suc x ≤ fresh xs
⊔-lemma (here refl) = m≤m⊔n _ _ ⊔-lemma {x} {.x ∷ xs} (here refl) = m≤m⊔n (suc x) (fresh xs)
⊔-lemma (there x∈) = ≤-trans (⊔-lemma x∈) (n≤m⊔n _ _) ⊔-lemma {x} {y ∷ xs} (there x∈) = ≤-trans (⊔-lemma {x} {xs} x∈) (n≤m⊔n (suc y) (fresh xs))
fresh-lemma : ∀ {x xs} → x ∈ xs → fresh xs ≢ x fresh-lemma : ∀ {x xs} → x ∈ xs → fresh xs ≢ x
fresh-lemma x∈ refl = 1+n≰n (⊔-lemma x∈) fresh-lemma x∈ refl = 1+n≰n (⊔-lemma x∈)