improved definition of fresh
This commit is contained in:
parent
952c1d4850
commit
a6c9b3e009
1 changed files with 5 additions and 6 deletions
|
@ -14,7 +14,7 @@ module Typed where
|
||||||
import Relation.Binary.PropositionalEquality as Eq
|
import Relation.Binary.PropositionalEquality as Eq
|
||||||
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
|
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
|
||||||
open import Data.Empty using (⊥; ⊥-elim)
|
open import Data.Empty using (⊥; ⊥-elim)
|
||||||
open import Data.List using (List; []; _∷_; [_]; _++_; foldr; filter)
|
open import Data.List using (List; []; _∷_; [_]; _++_; map; foldr; filter)
|
||||||
open import Data.List.Any using (Any; here; there)
|
open import Data.List.Any using (Any; here; there)
|
||||||
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_; _≤_; _⊔_; _≟_)
|
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_; _≤_; _⊔_; _≟_)
|
||||||
open import Data.Nat.Properties using (≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; 1+n≰n)
|
open import Data.Nat.Properties using (≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; 1+n≰n)
|
||||||
|
@ -25,7 +25,6 @@ open import Function using (_∘_)
|
||||||
open import Function.Equality using (≡-setoid)
|
open import Function.Equality using (≡-setoid)
|
||||||
open import Function.Equivalence using (_⇔_; equivalence)
|
open import Function.Equivalence using (_⇔_; equivalence)
|
||||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||||
open import Relation.Nullary.Decidable using (map; From-no; from-no)
|
|
||||||
open import Relation.Nullary.Negation using (contraposition; ¬?)
|
open import Relation.Nullary.Negation using (contraposition; ¬?)
|
||||||
open import Relation.Nullary.Product using (_×-dec_)
|
open import Relation.Nullary.Product using (_×-dec_)
|
||||||
\end{code}
|
\end{code}
|
||||||
|
@ -285,11 +284,11 @@ free (L · M) = free L ∪ free M
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
fresh : List Id → Id
|
fresh : List Id → Id
|
||||||
fresh = suc ∘ foldr _⊔_ 0
|
fresh = foldr _⊔_ 0 ∘ map suc
|
||||||
|
|
||||||
⊔-lemma : ∀ {x xs} → x ∈ xs → x ≤ foldr _⊔_ 0 xs
|
⊔-lemma : ∀ {x xs} → x ∈ xs → suc x ≤ fresh xs
|
||||||
⊔-lemma (here refl) = m≤m⊔n _ _
|
⊔-lemma {x} {.x ∷ xs} (here refl) = m≤m⊔n (suc x) (fresh xs)
|
||||||
⊔-lemma (there x∈) = ≤-trans (⊔-lemma x∈) (n≤m⊔n _ _)
|
⊔-lemma {x} {y ∷ xs} (there x∈) = ≤-trans (⊔-lemma {x} {xs} x∈) (n≤m⊔n (suc y) (fresh xs))
|
||||||
|
|
||||||
fresh-lemma : ∀ {x xs} → x ∈ xs → fresh xs ≢ x
|
fresh-lemma : ∀ {x xs} → x ∈ xs → fresh xs ≢ x
|
||||||
fresh-lemma x∈ refl = 1+n≰n (⊔-lemma x∈)
|
fresh-lemma x∈ refl = 1+n≰n (⊔-lemma x∈)
|
||||||
|
|
Loading…
Reference in a new issue