completed some lemmas in Collections
This commit is contained in:
parent
6ca45f28df
commit
a8f59134fa
1 changed files with 36 additions and 15 deletions
|
@ -18,7 +18,7 @@ open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; s≤s; z≤n
|
|||
-- open import Data.Nat.Properties using
|
||||
-- (+-assoc; +-identityˡ; +-identityʳ; *-assoc; *-identityˡ; *-identityʳ)
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Isomorphism using (_≃_)
|
||||
|
@ -79,25 +79,46 @@ module Collection (A : Set) (_≟_ : ∀ (x y : A) → Dec (x ≡ y)) where
|
|||
_\\_ : Coll A → A → Coll A
|
||||
xs \\ x = filter (¬? ∘ (_≟ x)) xs
|
||||
|
||||
lemma₅ : ∀ {w x xs} → w ∈ xs → w ≢ x → w ∈ xs \\ x
|
||||
lemma₅ {w} {x} here w≢ with w ≟ x
|
||||
lemma-\\-∈-≢ : ∀ {w x xs} → w ∈ xs \\ x ↔ w ∈ xs × w ≢ x
|
||||
lemma-\\-∈-≢ = ⟨ forward , backward ⟩
|
||||
where
|
||||
|
||||
forward : ∀ {w x xs} → w ∈ xs \\ x → w ∈ xs × w ≢ x
|
||||
forward {w} {x} {[]} ()
|
||||
forward {w} {x} {y ∷ xs} w∈ with y ≟ x
|
||||
forward {w} {x} {.x ∷ xs} w∈ | yes refl
|
||||
with forward {w} {x} {xs} w∈
|
||||
... | ⟨ ∈xs , ≢x ⟩ = ⟨ there ∈xs , ≢x ⟩
|
||||
forward {.y} {x} {y ∷ xs} here | no y≢ = ⟨ here , (λ y≡ → y≢ y≡) ⟩
|
||||
forward {w} {x} {y ∷ xs} (there w∈) | no _
|
||||
with forward {w} {x} {xs} w∈
|
||||
... | ⟨ ∈xs , ≢x ⟩ = ⟨ there ∈xs , ≢x ⟩
|
||||
|
||||
backward : ∀ {w x xs} → w ∈ xs × w ≢ x → w ∈ xs \\ x
|
||||
backward {w} {x} ⟨ here , w≢ ⟩ with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ = here
|
||||
lemma₅ {_} {x} {y ∷ _} (there w∈) w≢ with y ≟ x
|
||||
... | yes refl = lemma₅ w∈ w≢
|
||||
... | no _ = there (lemma₅ w∈ w≢)
|
||||
backward {_} {x} {y ∷ _} ⟨ there w∈ , w≢ ⟩ with y ≟ x
|
||||
... | yes refl = backward ⟨ w∈ , w≢ ⟩
|
||||
... | no _ = there (backward ⟨ w∈ , w≢ ⟩)
|
||||
|
||||
lemma₆ : ∀ {x : A} {xs ys : Coll A} → xs \\ x ⊆ ys ↔ xs ⊆ x ∷ ys
|
||||
lemma₆ = ⟨ forward , backward ⟩
|
||||
|
||||
lemma-\\-∷ : ∀ {x xs ys} → xs \\ x ⊆ ys ↔ xs ⊆ x ∷ ys
|
||||
lemma-\\-∷ = ⟨ forward , backward ⟩
|
||||
where
|
||||
|
||||
forward : ∀ {x xs ys} → xs \\ x ⊆ ys → xs ⊆ x ∷ ys
|
||||
forward {x} ⊆ys {w} w∈ with w ≟ x
|
||||
forward {x} ⊆ys {w} ∈xs with w ≟ x
|
||||
... | yes refl = here
|
||||
... | no w≢ = there (⊆ys (lemma₅ w∈ w≢))
|
||||
|
||||
backward = {!!}
|
||||
... | no ≢x = there (⊆ys (proj₂ lemma-\\-∈-≢ ⟨ ∈xs , ≢x ⟩))
|
||||
|
||||
backward : ∀ {x xs ys} → xs ⊆ x ∷ ys → xs \\ x ⊆ ys
|
||||
backward {x} xs⊆ {w} w∈ with proj₁ lemma-\\-∈-≢ w∈
|
||||
... | ⟨ ∈xs , ≢x ⟩ with w ≟ x
|
||||
... | yes refl = ⊥-elim (≢x refl)
|
||||
... | no w≢ with (xs⊆ ∈xs)
|
||||
... | here = ⊥-elim (≢x refl)
|
||||
... | there ∈ys = ∈ys
|
||||
|
||||
⊆-refl : ∀ {xs} → xs ⊆ xs
|
||||
⊆-refl ∈xs = ∈xs
|
||||
|
|
Loading…
Reference in a new issue