diff --git a/out/Stlc.md b/out/Stlc.md index 42ef35ef..d2b6f035 100644 --- a/out/Stlc.md +++ b/out/Stlc.md @@ -5313,7 +5313,7 @@ Here are the above derivations formalised in Agda. -## Interaction with Agda +#### Interaction with Agda Construction of a type derivation is best done interactively. Start with the declaration: @@ -5359,245 +5359,245 @@ In other words, no type `A` is the type of this term.
-contradiction : ∀: ∀ {A B}A B→} ¬→ (𝔹¬ ≡(𝔹 A≡ ⇒A ⇒ B) contradiction () notyping : ∀: {A}∀ {A→} ¬→ (∅¬ ⊢(∅ λ[⊢ xλ[ ∶x 𝔹∶ ]𝔹 λ[] yλ[ ∶y 𝔹∶ ]𝔹 `] x` ·x `· y` ∶y ∶ A) notyping (⇒-I (⇒-I (⇒-E (Ax Γx) ) (Ax Γy)))) = = contradiction (just-injective Γx) diff --git a/src/Stlc.lagda b/src/Stlc.lagda index 2c7484d8..e4f4ae05 100644 --- a/src/Stlc.lagda +++ b/src/Stlc.lagda @@ -779,7 +779,7 @@ typing₂ : ∅ ⊢ two ∶ (𝔹 ⇒ 𝔹) ⇒ 𝔹 ⇒ 𝔹 typing₂ = ⇒-I (⇒-I (⇒-E (Ax refl) (⇒-E (Ax refl) (Ax refl)))) \end{code} -## Interaction with Agda +#### Interaction with Agda Construction of a type derivation is best done interactively. Start with the declaration: