diff --git a/src/Connectives.lagda b/src/Connectives.lagda index 0172dfda..16a7a1ca 100644 --- a/src/Connectives.lagda +++ b/src/Connectives.lagda @@ -469,7 +469,7 @@ The nullary case of `uniq-⊎` is `uniq-⊥`, which asserts that `⊥-elim` is equal to any arbitrary function from `⊥`. \begin{code} uniq-⊥ : ∀ {C : Set} (h : ⊥ → C) (w : ⊥) → ⊥-elim w ≡ h w -uniq-⊥ () +uniq-⊥ h () \end{code} The pattern matching on the left-hand side is essential. Using the absurd pattern asserts there are no possible values for `w`,