moving plta.Isomorphism to end of imports

This commit is contained in:
wadler 2018-06-11 22:24:30 -07:00
parent 14f2d569fb
commit b3a386b56c
5 changed files with 7 additions and 7 deletions

View file

@ -25,11 +25,11 @@ a principle known as *Propositions as Types*.
import Relation.Binary.PropositionalEquality as Eq import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong) open Eq using (_≡_; refl; sym; trans; cong)
open Eq.≡-Reasoning open Eq.≡-Reasoning
open import plta.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_)
open plta.Isomorphism.≃-Reasoning
open import Data.Nat using (; zero; suc; _+_; _*_) open import Data.Nat using (; zero; suc; _+_; _*_)
open import Data.Nat.Properties.Simple using (+-suc) open import Data.Nat.Properties.Simple using (+-suc)
open import Function using (_∘_) open import Function using (_∘_)
open import plta.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_)
open plta.Isomorphism.≃-Reasoning
\end{code} \end{code}
We assume [extensionality][extensionality]. We assume [extensionality][extensionality].

View file

@ -497,7 +497,8 @@ on which matches; but either is equally valid.
## Decidability of All ## Decidability of All
Recall that in Chapter [Lists]({{ site.baseurl }}{% link out/plta/Lists.md %}#All) we defined a predicate `All P` that holds if a given predicate is satisfied by every element of a list. Recall that in Chapter [Lists]({{ site.baseurl }}{% link out/plta/Lists.md %}#All)
we defined a predicate `All P` that holds if a given predicate is satisfied by every element of a list.
\begin{code} \begin{code}
data All {A : Set} (P : A → Set) : List A → Set where data All {A : Set} (P : A → Set) : List A → Set where
[] : All P [] [] : All P []

View file

@ -23,9 +23,9 @@ open import Data.Nat.Properties using
(+-assoc; +-identityˡ; +-identityʳ; *-assoc; *-identityˡ; *-identityʳ) (+-assoc; +-identityˡ; +-identityʳ; *-assoc; *-identityˡ; *-identityʳ)
open import Relation.Nullary using (¬_) open import Relation.Nullary using (¬_)
open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩) open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩)
open import plta.Isomorphism using (_≃_)
open import Function using (_∘_) open import Function using (_∘_)
open import Level using (Level) open import Level using (Level)
open import plta.Isomorphism using (_≃_)
\end{code} \end{code}
We assume [extensionality][extensionality]. We assume [extensionality][extensionality].

View file

@ -14,13 +14,13 @@ and classical logic.
## Imports ## Imports
\begin{code} \begin{code}
open import plta.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Data.Nat using (; zero; suc) open import Data.Nat using (; zero; suc)
open import Data.Empty using (⊥; ⊥-elim) open import Data.Empty using (⊥; ⊥-elim)
open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩) open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Function using (_∘_) open import Function using (_∘_)
open import plta.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_)
\end{code} \end{code}

View file

@ -16,14 +16,13 @@ This chapter introduces universal and existential quantification.
import Relation.Binary.PropositionalEquality as Eq import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong) open Eq using (_≡_; refl; sym; trans; cong)
open Eq.≡-Reasoning open Eq.≡-Reasoning
open import plta.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_)
open plta.Isomorphism.≃-Reasoning
open import Data.Nat using (; zero; suc; _+_; _*_) open import Data.Nat using (; zero; suc; _+_; _*_)
open import Data.Nat.Properties.Simple using (+-suc) open import Data.Nat.Properties.Simple using (+-suc)
open import Relation.Nullary using (¬_) open import Relation.Nullary using (¬_)
open import Function using (_∘_) open import Function using (_∘_)
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩) open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Sum using (_⊎_; inj₁; inj₂)
open import plta.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_)
\end{code} \end{code}
We assume [extensionality][extensionality]. We assume [extensionality][extensionality].