moving plta.Isomorphism to end of imports
This commit is contained in:
parent
14f2d569fb
commit
b3a386b56c
5 changed files with 7 additions and 7 deletions
|
@ -25,11 +25,11 @@ a principle known as *Propositions as Types*.
|
|||
import Relation.Binary.PropositionalEquality as Eq
|
||||
open Eq using (_≡_; refl; sym; trans; cong)
|
||||
open Eq.≡-Reasoning
|
||||
open import plta.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_)
|
||||
open plta.Isomorphism.≃-Reasoning
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
|
||||
open import Data.Nat.Properties.Simple using (+-suc)
|
||||
open import Function using (_∘_)
|
||||
open import plta.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_)
|
||||
open plta.Isomorphism.≃-Reasoning
|
||||
\end{code}
|
||||
|
||||
We assume [extensionality][extensionality].
|
||||
|
|
|
@ -497,7 +497,8 @@ on which matches; but either is equally valid.
|
|||
|
||||
## Decidability of All
|
||||
|
||||
Recall that in Chapter [Lists]({{ site.baseurl }}{% link out/plta/Lists.md %}#All) we defined a predicate `All P` that holds if a given predicate is satisfied by every element of a list.
|
||||
Recall that in Chapter [Lists]({{ site.baseurl }}{% link out/plta/Lists.md %}#All)
|
||||
we defined a predicate `All P` that holds if a given predicate is satisfied by every element of a list.
|
||||
\begin{code}
|
||||
data All {A : Set} (P : A → Set) : List A → Set where
|
||||
[] : All P []
|
||||
|
|
|
@ -23,9 +23,9 @@ open import Data.Nat.Properties using
|
|||
(+-assoc; +-identityˡ; +-identityʳ; *-assoc; *-identityˡ; *-identityʳ)
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩)
|
||||
open import plta.Isomorphism using (_≃_)
|
||||
open import Function using (_∘_)
|
||||
open import Level using (Level)
|
||||
open import plta.Isomorphism using (_≃_)
|
||||
\end{code}
|
||||
|
||||
We assume [extensionality][extensionality].
|
||||
|
|
|
@ -14,13 +14,13 @@ and classical logic.
|
|||
## Imports
|
||||
|
||||
\begin{code}
|
||||
open import plta.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
|
||||
open import Data.Nat using (ℕ; zero; suc)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
|
||||
open import Function using (_∘_)
|
||||
open import plta.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_)
|
||||
\end{code}
|
||||
|
||||
|
||||
|
|
|
@ -16,14 +16,13 @@ This chapter introduces universal and existential quantification.
|
|||
import Relation.Binary.PropositionalEquality as Eq
|
||||
open Eq using (_≡_; refl; sym; trans; cong)
|
||||
open Eq.≡-Reasoning
|
||||
open import plta.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_)
|
||||
open plta.Isomorphism.≃-Reasoning
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
|
||||
open import Data.Nat.Properties.Simple using (+-suc)
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Function using (_∘_)
|
||||
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import plta.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_)
|
||||
\end{code}
|
||||
|
||||
We assume [extensionality][extensionality].
|
||||
|
|
Loading…
Reference in a new issue