diff --git a/src/plfa/Lists.lagda b/src/plfa/Lists.lagda index 032d3808..ab3ba153 100644 --- a/src/plfa/Lists.lagda +++ b/src/plfa/Lists.lagda @@ -696,7 +696,7 @@ postulate ## Monoids Typically when we use a fold the operator is associative and the -value is a left and right identity for the value, meaning that the +value is a left and right identity for the operator, meaning that the operator and the value form a _monoid_. We can define a monoid as a suitable record type: diff --git a/src/plfa/Properties.lagda b/src/plfa/Properties.lagda index f5736580..dd0e996a 100644 --- a/src/plfa/Properties.lagda +++ b/src/plfa/Properties.lagda @@ -476,9 +476,9 @@ With the extension lemma under our belts, it is straightforward to prove renaming preserves types: \begin{code} rename : ∀ {Γ Δ} - → (∀ {x A} → Γ ∋ x ⦂ A → Δ ∋ x ⦂ A) - ---------------------------------- - → (∀ {M A} → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A) + → (∀ {x A} → Γ ∋ x ⦂ A → Δ ∋ x ⦂ A) + ---------------------------------- + → (∀ {M A} → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A) rename ρ (⊢` ∋w) = ⊢` (ρ ∋w) rename ρ (⊢ƛ ⊢N) = ⊢ƛ (rename (ext ρ) ⊢N) rename ρ (⊢L · ⊢M) = (rename ρ ⊢L) · (rename ρ ⊢M) @@ -498,7 +498,7 @@ the variable appears in `Δ`. * If the term is a lambda abstraction, use the previous lemma to extend the map `ρ` suitably and use induction to rename the body of the -abstraction +abstraction. * If the term is an application, use induction to rename both the function and the argument.