got rid of ext in TypedDB
This commit is contained in:
parent
303f13ded4
commit
d19c8f5a33
1 changed files with 24 additions and 20 deletions
|
@ -52,9 +52,9 @@ data _∋_ : Env → Type → Set where
|
|||
Γ , A ∋ A
|
||||
|
||||
S_ : ∀ {Γ} {A B} →
|
||||
Γ ∋ A →
|
||||
Γ ∋ B →
|
||||
-----------
|
||||
Γ , B ∋ A
|
||||
Γ , A ∋ B
|
||||
|
||||
data _⊢_ : Env → Type → Set where
|
||||
|
||||
|
@ -172,30 +172,34 @@ _ = refl
|
|||
## Renaming
|
||||
|
||||
\begin{code}
|
||||
ext∋ : ∀ {Γ Δ} {B} → (∀ {A} → Γ ∋ A → Δ ∋ A) → Δ ∋ B → (∀ {A} → Γ , B ∋ A → Δ ∋ A)
|
||||
ext∋ ρ j Z = j
|
||||
ext∋ ρ j (S k) = ρ k
|
||||
|
||||
rename : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ∋ A) → (∀ {A} → Γ ⊢ A → Δ ⊢ A)
|
||||
rename ρ (⌊ n ⌋) = ⌊ ρ n ⌋
|
||||
rename ρ (ƛ N) = ƛ (rename (ext∋ (S_ ∘ ρ) Z) N)
|
||||
rename ρ (L · M) = (rename ρ L) · (rename ρ M)
|
||||
rename : ∀ {Γ Δ} → (∀ {B} → Γ ∋ B → Δ ∋ B) → (∀ {B} → Γ ⊢ B → Δ ⊢ B)
|
||||
rename ρ (⌊ n ⌋) = ⌊ ρ n ⌋
|
||||
rename {Γ} {Δ} ρ (ƛ_ {A = A} N) = ƛ (rename ρ′ N)
|
||||
where
|
||||
ρ′ : ∀ {B} → Γ , A ∋ B → Δ , A ∋ B
|
||||
ρ′ Z = Z
|
||||
ρ′ (S k) = S (ρ k)
|
||||
rename ρ (L · M) = (rename ρ L) · (rename ρ M)
|
||||
\end{code}
|
||||
|
||||
## Substitution
|
||||
|
||||
\begin{code}
|
||||
ext⊢ : ∀ {Γ Δ} {B} → (∀ {A} → Γ ∋ A → Δ ⊢ A) → Δ ⊢ B → (∀ {A} → Γ , B ∋ A → Δ ⊢ A)
|
||||
ext⊢ ρ M Z = M
|
||||
ext⊢ ρ M (S k) = ρ k
|
||||
subst : ∀ {Γ Δ} → (∀ {B} → Γ ∋ B → Δ ⊢ B) → (∀ {B} → Γ ⊢ B → Δ ⊢ B)
|
||||
subst ρ (⌊ k ⌋) = ρ k
|
||||
subst {Γ} {Δ} ρ (ƛ_ {A = A} N) = ƛ (subst ρ′ N)
|
||||
where
|
||||
ρ′ : ∀ {B} → Γ , A ∋ B → Δ , A ⊢ B
|
||||
ρ′ Z = ⌊ Z ⌋
|
||||
ρ′ (S k) = rename S_ (ρ k)
|
||||
subst ρ (L · M) = (subst ρ L) · (subst ρ M)
|
||||
|
||||
subst : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ⊢ A) → (∀ {A} → Γ ⊢ A → Δ ⊢ A)
|
||||
subst ρ (⌊ n ⌋) = ρ n
|
||||
subst ρ (ƛ N) = ƛ (subst (ext⊢ (rename S_ ∘ ρ) ⌊ Z ⌋) N)
|
||||
subst ρ (L · M) = (subst ρ L) · (subst ρ M)
|
||||
|
||||
substitute : ∀ {Γ} {A B} → Γ , A ⊢ B → Γ ⊢ A → Γ ⊢ B
|
||||
substitute N M = subst (ext⊢ ⌊_⌋ M) N
|
||||
substitute : ∀ {Γ A B} → Γ , A ⊢ B → Γ ⊢ A → Γ ⊢ B
|
||||
substitute {Γ} {A} {B} N M = subst ρ N
|
||||
where
|
||||
ρ : ∀ {B} → Γ , A ∋ B → Γ ⊢ B
|
||||
ρ Z = M
|
||||
ρ (S k) = ⌊ k ⌋
|
||||
\end{code}
|
||||
|
||||
## Normal
|
||||
|
|
Loading…
Reference in a new issue