Merge pull request #489 from plfa/issue488

Fix #488
This commit is contained in:
Wen Kokke 2020-07-13 22:56:27 +01:00 committed by GitHub
commit d3a7a60060
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 148 additions and 22 deletions

120
extra/Issue488.agda Normal file
View file

@ -0,0 +1,120 @@
module Issue488 where
open import Data.Product using (∃-syntax; -,_; _×_; _,_)
open import Relation.Nullary using (¬_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans)
module CounterExample where
data Term : Set where
A B C D : Term
data _—→_ : (M N : Term) Set where
B—→C : B —→ C
C—→B : C —→ B
B—→A : B —→ A
C—→D : C —→ D
infix 2 _—↠_
infix 1 begin_
infixr 2 _—→⟨_⟩_
infix 3 _∎
data _—↠_ : Term Term Set where
_∎ : M
---------
M —↠ M
_—→⟨_⟩_ : L {M N}
L —→ M
M —↠ N
---------
L —↠ N
begin_ : {M N}
M —↠ N
------
M —↠ N
begin M—↠N = M—↠N
diamond : {L M N}
((L —→ M) × (L —→ N))
-----------------------------
∃[ P ] ((M —↠ P) × (N —↠ P))
diamond (B—→A , B—→A) = -, ((A ) , (A ))
diamond (C—→B , C—→B) = -, ((B ) , (B ))
diamond (B—→C , B—→C) = -, ((C ) , (C ))
diamond (C—→D , C—→D) = -, ((D ) , (D ))
diamond (B—→C , B—→A) = -, ((begin C —→⟨ C—→B B —→⟨ B—→A A ) , (A ))
diamond (C—→B , C—→D) = -, ((begin B —→⟨ B—→C C —→⟨ C—→D D ) , (D ))
diamond (B—→A , B—→C) = -, ((A ) , (begin C —→⟨ C—→B B —→⟨ B—→A A ))
diamond (C—→D , C—→B) = -, ((D ) , (begin B —→⟨ B—→C C —→⟨ C—→D D ))
A—↠A : {P} A —↠ P P A
A—↠A (.A ) = refl
D—↠D : {P} D —↠ P P D
D—↠D (.D ) = refl
¬confluence : ¬ ( {L M N}
((L —↠ M) × (L —↠ N))
-----------------------------
∃[ P ] ((M —↠ P) × (N —↠ P)))
¬confluence confluence
with confluence ( (begin B —→⟨ B—→A A )
, (begin B —→⟨ B—→C C —→⟨ C—→D D ) )
... | (P , (A—↠P , D—↠P))
with trans (sym (A—↠A A—↠P)) (D—↠D D—↠P)
... | ()
module DeterministicImpliesDiamondPropertyAndConfluence where
infix 2 _—↠_
infix 1 begin_
infixr 2 _—→⟨_⟩_
infix 3 _∎
postulate
Term : Set
_—→_ : Term Term Set
postulate
deterministic : {L M N}
L —→ M
L —→ N
------
M N
data _—↠_ : Term Term Set where
_∎ : M
---------
M —↠ M
_—→⟨_⟩_ : L {M N}
L —→ M
M —↠ N
-------
L —↠ N
begin_ : {M N}
M —↠ N
------
M —↠ N
begin M—↠N = M—↠N
diamond : {L M N}
((L —→ M) × (L —→ N))
--------------------
∃[ P ] ((M —↠ P) × (N —↠ P))
diamond (L—→M , L—→N)
rewrite deterministic L—→M L—→N = -, ((_ ) , (_ ))
confluence : {L M N}
(L —↠ M)
(L —↠ N)
--------------------
∃[ P ] ((M —↠ P) × (N —↠ P))
confluence {L} {.L} { N} (.L ) L—↠N = -, (L—↠N , (N ))
confluence {L} { M} {.L} L—↠M (.L ) = -, ((M ) , L—↠M)
confluence {L} { M} { N} (.L —→⟨ L—→M M—↠M) (.L —→⟨ L—→N N—↠N)
rewrite deterministic L—→M L—→N = confluence M—↠M N—↠N

View file

@ -53,12 +53,13 @@ four.
## Imports
```
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
open import Data.String using (String; _≟_)
open import Data.Nat using (; zero; suc)
open import Data.Empty using (⊥; ⊥-elim)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Data.List using (List; _∷_; [])
open import Data.Nat using (; zero; suc)
open import Data.Product using (∃-syntax; _×_)
open import Data.String using (String; _≟_)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
```
## Syntax of terms
@ -788,28 +789,33 @@ while if the top two lines stand for a single reduction
step and the bottom two stand for zero or more reduction
steps it is called the diamond property. In symbols:
confluence : ∀ {L M N} → ∃[ P ]
( ((L —↠ M) × (L —↠ N))
--------------------
→ ((M —↠ P) × (N —↠ P)) )
```
postulate
confluence : ∀ {L M N}
→ ((L —↠ M) × (L —↠ N))
--------------------
→ ∃[ P ] ((M —↠ P) × (N —↠ P))
diamond : ∀ {L M N} → ∃[ P ]
( ((L —→ M) × (L —→ N))
--------------------
→ ((M —↠ P) × (N —↠ P)) )
diamond : ∀ {L M N}
→ ((L —→ M) × (L —→ N))
--------------------
→ ∃[ P ] ((M —↠ P) × (N —↠ P))
```
The reduction system studied in this chapter is deterministic.
In symbols:
deterministic : ∀ {L M N}
→ L —→ M
→ L —→ N
------
→ M ≡ N
```
postulate
deterministic : ∀ {L M N}
→ L —→ M
→ L —→ N
------
→ M ≡ N
```
It is easy to show that every deterministic relation satisfies
the diamond property, and that every relation that satisfies
the diamond property is confluent. Hence, all the reduction
the diamond and confluence properties. Hence, all the reduction
systems studied in this text are trivially confluent.