diff --git a/src/StlcProp.lagda b/src/StlcProp.lagda index b733f9f7..5a11c945 100644 --- a/src/StlcProp.lagda +++ b/src/StlcProp.lagda @@ -200,10 +200,10 @@ A variable `x` appears _free_ in a term `M` if `M` contains an occurrence of `x` that is not bound in an enclosing lambda abstraction. For example: - - `x` appears free, but `f` does not, in `λ[ f ∶ (𝔹 ⇒ 𝔹) ] ` f · ` x` - - both `f` and `x` appear free in `(λ[ f ∶ (𝔹 ⇒ 𝔹) ] ` f · ` x) · ` f`; - indeed, `f` appears both bound and free in this term - - no variables appear free in `λ[ f ∶ (𝔹 ⇒ 𝔹) ] λ[ x ∶ 𝔹 ] ` f · ` x` + - Variable `x` appears free, but `f` does not, in ``λ[ f ∶ (𝔹 ⇒ 𝔹) ] ` f · ` x``. + - Both `f` and `x` appear free in ``(λ[ f ∶ (𝔹 ⇒ 𝔹) ] ` f · ` x) · ` f``. + Indeed, `f` appears both bound and free in this term. + - No variables appear free in ``λ[ f ∶ (𝔹 ⇒ 𝔹) ] λ[ x ∶ 𝔹 ] ` f · ` x``. Formally: diff --git a/src/Typed.lagda b/src/Typed.lagda index d0046c01..e8a4fd84 100644 --- a/src/Typed.lagda +++ b/src/Typed.lagda @@ -34,8 +34,6 @@ pattern [_,_,_] x y z = x ∷ y ∷ z ∷ [] ## Syntax \begin{code} -infix 4 _wf -infix 4 _∉_ infix 4 _∋_`:_ infix 4 _⊢_`:_ infixl 5 _,_`:_ @@ -44,7 +42,6 @@ infix 6 `λ_`→_ infixl 7 `if0_then_else_ infix 8 `suc_ `pred_ `Y_ infixl 9 _·_ -infix 10 S_ Id : Set Id = String @@ -73,14 +70,12 @@ data _∋_`:_ : Env → Id → Type → Set where -------------------- → Γ , x `: A ∋ x `: A - S_ : ∀ {Γ A B x w} + S : ∀ {Γ A B x w} + → w ≢ x → Γ ∋ w `: B -------------------- → Γ , x `: A ∋ w `: B -_∉_ : Id → Env → Set -x ∉ Γ = ∀ {A} → ¬ (Γ ∋ x `: A) - data _⊢_`:_ : Env → Term → Type → Set where Ax : ∀ {Γ A x} @@ -89,7 +84,6 @@ data _⊢_`:_ : Env → Term → Type → Set where → Γ ⊢ ` x `: A ⊢λ : ∀ {Γ x N A B} - → x ∉ Γ → Γ , x `: A ⊢ N `: B -------------------------- → Γ ⊢ (`λ x `→ N) `: A `→ B @@ -125,48 +119,51 @@ data _⊢_`:_ : Env → Term → Type → Set where → Γ ⊢ M `: A `→ A ---------------- → Γ ⊢ `Y M `: A - -data _wf : Env → Set where - - empty : - ----- - ε wf - - extend : ∀ {Γ x A} - → Γ wf - → x ∉ Γ - ------------------------- - → (Γ , x `: A) wf \end{code} ## Test examples \begin{code} +s≢z : "s" ≢ "z" +s≢z () + +n≢z : "n" ≢ "z" +n≢z () + +n≢s : "n" ≢ "s" +n≢s () + +m≢z : "m" ≢ "z" +m≢z () + +m≢s : "m" ≢ "s" +m≢s () + +m≢n : "m" ≢ "n" +m≢n () + +p≢n : "p" ≢ "n" +p≢n () + +p≢m : "p" ≢ "m" +p≢m () + two : Term two = `suc `suc `zero ⊢two : ε ⊢ two `: `ℕ -⊢two = (⊢suc (⊢suc ⊢zero)) +⊢two = ⊢suc (⊢suc ⊢zero) plus : Term -plus = `Y (`λ "p" `→ `λ "m" `→ `λ "n" `→ `if0 ` "m" then ` "n" else ` "p" · (`pred ` "m") · ` "n") +plus = `Y (`λ "p" `→ `λ "m" `→ `λ "n" `→ + `if0 ` "m" then ` "n" else `suc (` "p" · (`pred (` "m")) · ` "n")) ⊢plus : ε ⊢ plus `: `ℕ `→ `ℕ `→ `ℕ -⊢plus = (⊢Y (⊢λ p∉ (⊢λ m∉ (⊢λ n∉ - (⊢if0 (Ax ⊢m) (Ax ⊢n) (Ax ⊢p · (⊢pred (Ax ⊢m)) · Ax ⊢n)))))) +⊢plus = (⊢Y (⊢λ (⊢λ (⊢λ (⊢if0 (Ax ⊢m) (Ax ⊢n) (⊢suc (Ax ⊢p · (⊢pred (Ax ⊢m)) · Ax ⊢n))))))) where - ⊢p = S S Z - ⊢m = S Z + ⊢p = S p≢n (S p≢m Z) + ⊢m = S m≢n Z ⊢n = Z - Γ₀ = ε - Γ₁ = Γ₀ , "p" `: `ℕ `→ `ℕ `→ `ℕ - Γ₂ = Γ₁ , "m" `: `ℕ - p∉ : "p" ∉ Γ₀ - p∉ () - m∉ : "m" ∉ Γ₁ - m∉ (S ()) - n∉ : "n" ∉ Γ₂ - n∉ (S S ()) four : Term four = plus · two · two @@ -181,55 +178,31 @@ twoCh : Term twoCh = `λ "s" `→ `λ "z" `→ (` "s" · (` "s" · ` "z")) ⊢twoCh : ε ⊢ twoCh `: Ch -⊢twoCh = (⊢λ s∉ (⊢λ z∉ (Ax ⊢s · (Ax ⊢s · Ax ⊢z)))) +⊢twoCh = (⊢λ (⊢λ (Ax ⊢s · (Ax ⊢s · Ax ⊢z)))) where - ⊢s = S Z + ⊢s = S s≢z Z ⊢z = Z - Γ₀ = ε - Γ₁ = Γ₀ , "s" `: `ℕ `→ `ℕ - s∉ : "s" ∉ ε - s∉ () - z∉ : "z" ∉ Γ₁ - z∉ (S ()) plusCh : Term plusCh = `λ "m" `→ `λ "n" `→ `λ "s" `→ `λ "z" `→ ` "m" · ` "s" · (` "n" · ` "s" · ` "z") ⊢plusCh : ε ⊢ plusCh `: Ch `→ Ch `→ Ch -⊢plusCh = (⊢λ m∉ (⊢λ n∉ (⊢λ s∉ (⊢λ z∉ (Ax ⊢m · Ax ⊢s · (Ax ⊢n · Ax ⊢s · Ax ⊢z)))))) +⊢plusCh = (⊢λ (⊢λ (⊢λ (⊢λ (Ax ⊢m · Ax ⊢s · (Ax ⊢n · Ax ⊢s · Ax ⊢z)))))) where - ⊢m = S S S Z - ⊢n = S S Z - ⊢s = S Z + ⊢m = S m≢z (S m≢s (S m≢n Z)) + ⊢n = S n≢z (S n≢s Z) + ⊢s = S s≢z Z ⊢z = Z - Γ₀ = ε - Γ₁ = Γ₀ , "m" `: Ch - Γ₂ = Γ₁ , "n" `: Ch - Γ₃ = Γ₂ , "s" `: `ℕ `→ `ℕ - m∉ : "m" ∉ Γ₀ - m∉ () - n∉ : "n" ∉ Γ₁ - n∉ (S ()) - s∉ : "s" ∉ Γ₂ - s∉ (S S ()) - z∉ : "z" ∉ Γ₃ - z∉ (S S S ()) fromCh : Term fromCh = `λ "m" `→ ` "m" · (`λ "s" `→ `suc ` "s") · `zero ⊢fromCh : ε ⊢ fromCh `: Ch `→ `ℕ -⊢fromCh = (⊢λ m∉ (Ax ⊢m · (⊢λ s∉ (⊢suc (Ax ⊢s))) · ⊢zero)) +⊢fromCh = (⊢λ (Ax ⊢m · (⊢λ (⊢suc (Ax ⊢s))) · ⊢zero)) where ⊢m = Z ⊢s = Z - Γ₀ = ε - Γ₁ = Γ₀ , "m" `: Ch - m∉ : "m" ∉ Γ₀ - m∉ () - s∉ : "s" ∉ Γ₁ - s∉ (S ()) fourCh : Term fourCh = fromCh · (plusCh · twoCh · twoCh) @@ -243,18 +216,18 @@ fourCh = fromCh · (plusCh · twoCh · twoCh) \begin{code} lookup : ∀ {Γ x A} → Γ ∋ x `: A → Id -lookup {Γ , x `: A} Z = x -lookup {Γ , x `: A} (S ⊢w) = lookup {Γ} ⊢w +lookup {Γ , x `: A} Z = x +lookup {Γ , x `: A} (S w≢ ⊢w) = lookup {Γ} ⊢w erase : ∀ {Γ M A} → Γ ⊢ M `: A → Term -erase (Ax ⊢w) = ` lookup ⊢w -erase (⊢λ {x = x} x∉ ⊢N) = `λ x `→ erase ⊢N -erase (⊢L · ⊢M) = erase ⊢L · erase ⊢M -erase (⊢zero) = `zero -erase (⊢suc ⊢M) = `suc (erase ⊢M) -erase (⊢pred ⊢M) = `pred (erase ⊢M) -erase (⊢if0 ⊢L ⊢M ⊢N) = `if0 (erase ⊢L) then (erase ⊢M) else (erase ⊢N) -erase (⊢Y ⊢M) = `Y (erase ⊢M) +erase (Ax ⊢w) = ` lookup ⊢w +erase (⊢λ {x = x} ⊢N) = `λ x `→ erase ⊢N +erase (⊢L · ⊢M) = erase ⊢L · erase ⊢M +erase (⊢zero) = `zero +erase (⊢suc ⊢M) = `suc (erase ⊢M) +erase (⊢pred ⊢M) = `pred (erase ⊢M) +erase (⊢if0 ⊢L ⊢M ⊢N) = `if0 (erase ⊢L) then (erase ⊢M) else (erase ⊢N) +erase (⊢Y ⊢M) = `Y (erase ⊢M) \end{code} ### Properties of erasure @@ -265,19 +238,19 @@ cong₃ : ∀ {A B C D : Set} (f : A → B → C → D) {s t u v x y} → cong₃ f refl refl refl = refl lookup-lemma : ∀ {Γ x A} → (⊢x : Γ ∋ x `: A) → lookup ⊢x ≡ x -lookup-lemma Z = refl -lookup-lemma (S ⊢w) = lookup-lemma ⊢w +lookup-lemma Z = refl +lookup-lemma (S w≢ ⊢w) = lookup-lemma ⊢w erase-lemma : ∀ {Γ M A} → (⊢M : Γ ⊢ M `: A) → erase ⊢M ≡ M -erase-lemma (Ax ⊢x) = cong `_ (lookup-lemma ⊢x) -erase-lemma (⊢λ {x = x} x∉ ⊢N) = cong (`λ x `→_) (erase-lemma ⊢N) -erase-lemma (⊢L · ⊢M) = cong₂ _·_ (erase-lemma ⊢L) (erase-lemma ⊢M) -erase-lemma (⊢zero) = refl -erase-lemma (⊢suc ⊢M) = cong `suc_ (erase-lemma ⊢M) -erase-lemma (⊢pred ⊢M) = cong `pred_ (erase-lemma ⊢M) -erase-lemma (⊢if0 ⊢L ⊢M ⊢N) = cong₃ `if0_then_else_ - (erase-lemma ⊢L) (erase-lemma ⊢M) (erase-lemma ⊢N) -erase-lemma (⊢Y ⊢M) = cong `Y_ (erase-lemma ⊢M) +erase-lemma (Ax ⊢x) = cong `_ (lookup-lemma ⊢x) +erase-lemma (⊢λ {x = x} ⊢N) = cong (`λ x `→_) (erase-lemma ⊢N) +erase-lemma (⊢L · ⊢M) = cong₂ _·_ (erase-lemma ⊢L) (erase-lemma ⊢M) +erase-lemma (⊢zero) = refl +erase-lemma (⊢suc ⊢M) = cong `suc_ (erase-lemma ⊢M) +erase-lemma (⊢pred ⊢M) = cong `pred_ (erase-lemma ⊢M) +erase-lemma (⊢if0 ⊢L ⊢M ⊢N) = cong₃ `if0_then_else_ + (erase-lemma ⊢L) (erase-lemma ⊢M) (erase-lemma ⊢N) +erase-lemma (⊢Y ⊢M) = cong `Y_ (erase-lemma ⊢M) \end{code} @@ -349,7 +322,7 @@ _ : (`λ "m" `→ ` "m" · ` "n") [ "n" := ` "p" · ` "q" ] ≡ `λ "m" `→ ` "m" · (` "p" · ` "q") _ = refl -_ : subst (∅ , "m" ↦ ` "p" , "n" ↦ ` "q") (` "m" · ` "n") ≡ (` "p" · ` "q") +_ : subst (∅ , "m" ↦ two , "n" ↦ four) (` "m" · ` "n") ≡ (two · four) _ = refl \end{code} @@ -434,11 +407,10 @@ data _⟶_ : Term → Term → Set where --------------- → `Y M ⟶ `Y M′ - β-Y : ∀ {V x N} - → Value V - → V ≡ `λ x `→ N + β-Y : ∀ {F x N} + → F ≡ `λ x `→ N ------------------------- - → `Y V ⟶ N [ x := `Y V ] + → `Y F ⟶ N [ x := `Y F ] \end{code} ## Reflexive and transitive closure @@ -497,7 +469,7 @@ canonical : ∀ {V A} → Canonical V A canonical ⊢zero Zero = Zero canonical (⊢suc ⊢V) (Suc VV) = Suc (canonical ⊢V VV) -canonical (⊢λ x∉ ⊢N) Fun = Fun ⊢N +canonical (⊢λ ⊢N) Fun = Fun ⊢N \end{code} Every canonical form has a type and a value. @@ -509,10 +481,7 @@ type : ∀ {V A} → ε ⊢ V `: A type Zero = ⊢zero type (Suc CV) = ⊢suc (type CV) -type (Fun {x = x} ⊢N) = ⊢λ x∉ ⊢N - where - x∉ : x ∉ ε - x∉ () +type (Fun {x = x} ⊢N) = ⊢λ ⊢N value : ∀ {V A} → Canonical V A @@ -523,6 +492,54 @@ value (Suc CV) = Suc (value CV) value (Fun ⊢N) = Fun \end{code} +## Values do not reduce + +Values do not reduce. +\begin{code} +Val-⟶ : ∀ {M N} → Value M → ¬ (M ⟶ N) +Val-⟶ Fun () +Val-⟶ Zero () +Val-⟶ (Suc VM) (ξ-suc M⟶N) = Val-⟶ VM M⟶N +\end{code} + +As a corollary, terms that reduce are not values. +\begin{code} +⟶-Val : ∀ {M N} → (M ⟶ N) → ¬ Value M +⟶-Val M⟶N VM = Val-⟶ VM M⟶N +\end{code} + + +## Reduction is deterministic + +\begin{code} +det : ∀ {M M′ M″} + → (M ⟶ M′) + → (M ⟶ M″) + ---------- + → M′ ≡ M″ +det (ξ-·₁ L⟶L′) (ξ-·₁ L⟶L″) = cong₂ _·_ (det L⟶L′ L⟶L″) refl +det (ξ-·₁ L⟶L′) (ξ-·₂ VL _) = ⊥-elim (Val-⟶ VL L⟶L′) +det (ξ-·₁ L⟶L′) (β-`→ _) = ⊥-elim (Val-⟶ Fun L⟶L′) +det (ξ-·₂ VL _) (ξ-·₁ L⟶L″) = ⊥-elim (Val-⟶ VL L⟶L″) +det (ξ-·₂ _ M⟶M′) (ξ-·₂ _ M⟶M″) = cong₂ _·_ refl (det M⟶M′ M⟶M″) +det (ξ-·₂ _ M⟶M′) (β-`→ VM) = ⊥-elim (Val-⟶ VM M⟶M′) +det (β-`→ VM) (ξ-·₁ L⟶L″) = ⊥-elim (Val-⟶ Fun L⟶L″) +det (β-`→ VM) (ξ-·₂ _ M⟶M″) = ⊥-elim (Val-⟶ VM M⟶M″) +det (β-`→ _) (β-`→ _) = refl +det (ξ-suc M⟶M′) (ξ-suc M⟶M″) = cong `suc_ (det M⟶M′ M⟶M″) +det (ξ-pred M⟶M′) (ξ-pred M⟶M″) = cong `pred_ (det M⟶M′ M⟶M″) +det (ξ-pred M⟶M′) β-pred-zero = {!!} +det (ξ-pred M⟶M′) (β-pred-suc x) = {!!} +det β-pred-zero L⟶N = {!!} +det (β-pred-suc x) L⟶N = {!!} +det (ξ-if0 L⟶M) L⟶N = {!!} +det β-if0-zero L⟶N = {!!} +det (β-if0-suc x) L⟶N = {!!} +det (ξ-Y L⟶M) L⟶N = {!!} +det (β-Y x₁) L⟶N = {!!} + +\end{code} + ## Progress \begin{code} @@ -538,7 +555,7 @@ data Progress (M : Term) (A : Type) : Set where progress : ∀ {M A} → ε ⊢ M `: A → Progress M A progress (Ax ()) -progress (⊢λ x∉ ⊢N) = done (Fun ⊢N) +progress (⊢λ ⊢N) = done (Fun ⊢N) progress (⊢L · ⊢M) with progress ⊢L ... | step L⟶L′ = step (ξ-·₁ L⟶L′) ... | done (Fun _) with progress ⊢M @@ -558,7 +575,7 @@ progress (⊢if0 ⊢L ⊢M ⊢N) with progress ⊢L ... | done (Suc CM) = step (β-if0-suc (value CM)) progress (⊢Y ⊢M) with progress ⊢M ... | step M⟶M′ = step (ξ-Y M⟶M′) -... | done (Fun _) = step (β-Y Fun refl) +... | done (Fun _) = step (β-Y refl) \end{code} @@ -599,204 +616,104 @@ free-lemma (⊢Y ⊢M) w∈ = free-lemma ⊢M w∈ ### Renaming -Let's try an example. The result I want to prove is: - - ⊢subst : ∀ {Γ Δ ρ} - → (∀ {x A} → Γ ∋ x `: A → Δ ⊢ ρ x `: A) - ----------------------------------------------- - → (∀ {M A} → Γ ⊢ M `: A → Δ ⊢ subst ρ M `: A) - -For this to work, I need to know that neither `Δ` or any of the -bound variables in `ρ x` will collide with any bound variable in `M`. -How can I establish this? - -In particular, I need to check that the conditions for ordinary -substitution are sufficient to establish the required invariants. -In that case we have: - - ⊢substitution : ∀ {Γ x A N B M} → - Γ , x `: A ⊢ N `: B → - Γ ⊢ M `: A → - -------------------- - Γ ⊢ N [ x := M ] `: B - -Here, since `N` is well-typed, none of it's bound variables collide -with `Γ`, and hence cannot collide with any free variable of `M`. -*But* we can't make a similar guarantee for the *bound* variables -of `M`, so substitution may break the invariants. Here are examples: - - (`λ "x" `→ `λ "y" `→ ` "x") (`λ "y" `→ ` "y") - ⟶ - (`λ "y" → (`λ "y" `→ ` "y")) - - ε , "z" `: `ℕ ⊢ (`λ "x" `→ `λ "y" → ` "x" · ` "y" · ` "z") (`λ "y" `→ ` "y" · ` "z") - ⟶ - ε , "z" `: `ℕ ⊢ (`λ "y" → (`λ "y" `→ ` "y" · ` "z") · ` "y" · ` "z") - -This doesn't maintain the invariant, but doesn't break either. -But I don't know how to prove it never breaks. Maybe I can come -up with an example that does break after a few steps. Or, maybe -I don't need the nested variables to be unique. Maybe all I need -is for the free variables in each `ρ x` to be distinct from any -of the bound variables in `N`. But this requires every bound -variable in `N` to not appear in `Γ`. Not clear how to maintain -such a condition without the invariant, so I don't know how -the proof works. Bugger! - -Consider a term with free variables, where every bound -variable of the term is distinct from any free variable. -(This is trivially true for a closed term.) Question: if -I never reduce under lambda, do I ever need -to perform renaming? - -It's easy to come up with a counter-example if I allow -reduction under lambda. - - (λ y → (λ x → λ y → x y) y) ⟶ (λ y → (λ y′ → y y′)) - -The above requires renaming. But if I remove the outer lambda - - (λ x → λ y → x y) y ⟶ (λ y → (λ y′ → y y′)) - -then the term on the left violates the condition on free -variables, and any term I can think of that causes problems -also violates the condition. So I may be able to do something -here. - - \begin{code} -{- -⊢rename : ∀ {Γ Δ xs} +⊢rename : ∀ {Γ Δ} → (∀ {x A} → Γ ∋ x `: A → Δ ∋ x `: A) -------------------------------------------------- → (∀ {M A} → Γ ⊢ M `: A → Δ ⊢ M `: A) -⊢rename ⊢σ (Ax ⊢x) = Ax (⊢σ ⊢x) -⊢rename {Γ} {Δ} ⊢σ (⊢λ {x = x} {N = N} {A = A} x∉Γ ⊢N) - = ⊢λ x∉Δ (⊢rename {Γ′} {Δ′} ⊢σ′ ⊢N) +⊢rename ⊢σ (Ax ⊢x) = Ax (⊢σ ⊢x) +⊢rename {Γ} {Δ} ⊢σ (⊢λ {x = x} {N = N} {A = A} ⊢N) + = ⊢λ (⊢rename {Γ′} {Δ′} ⊢σ′ ⊢N) where Γ′ = Γ , x `: A Δ′ = Δ , x `: A - xs′ = x ∷ xs - ⊢σ′ : ∀ {w B} → w ∈ xs′ → Γ′ ∋ w `: B → Δ′ ∋ w `: B - ⊢σ′ w∈′ Z = Z - ⊢σ′ w∈′ (S w≢ ⊢w) = S w≢ (⊢σ ∈w ⊢w) - where - ∈w = there⁻¹ w∈′ w≢ + ⊢σ′ : ∀ {w B} → Γ′ ∋ w `: B → Δ′ ∋ w `: B + ⊢σ′ Z = Z + ⊢σ′ (S w≢ ⊢w) = S w≢ (⊢σ ⊢w) - ⊆xs′ : free N ⊆ xs′ - ⊆xs′ = \\-to-∷ ⊆xs -⊢rename ⊢σ ⊆xs (⊢L · ⊢M) = ⊢rename ⊢σ L⊆ ⊢L · ⊢rename ⊢σ M⊆ ⊢M - where - L⊆ = trans-⊆ ⊆-++₁ ⊆xs - M⊆ = trans-⊆ ⊆-++₂ ⊆xs -⊢rename ⊢σ ⊆xs (⊢zero) = ⊢zero -⊢rename ⊢σ ⊆xs (⊢suc ⊢M) = ⊢suc (⊢rename ⊢σ ⊆xs ⊢M) -⊢rename ⊢σ ⊆xs (⊢pred ⊢M) = ⊢pred (⊢rename ⊢σ ⊆xs ⊢M) -⊢rename ⊢σ ⊆xs (⊢if0 {L = L} ⊢L ⊢M ⊢N) - = ⊢if0 (⊢rename ⊢σ L⊆ ⊢L) (⊢rename ⊢σ M⊆ ⊢M) (⊢rename ⊢σ N⊆ ⊢N) - where - L⊆ = trans-⊆ ⊆-++₁ ⊆xs - M⊆ = trans-⊆ ⊆-++₁ (trans-⊆ (⊆-++₂ {free L}) ⊆xs) - N⊆ = trans-⊆ ⊆-++₂ (trans-⊆ (⊆-++₂ {free L}) ⊆xs) -⊢rename ⊢σ ⊆xs (⊢Y ⊢M) = ⊢Y (⊢rename ⊢σ ⊆xs ⊢M) --} +⊢rename ⊢σ (⊢L · ⊢M) = ⊢rename ⊢σ ⊢L · ⊢rename ⊢σ ⊢M +⊢rename ⊢σ (⊢zero) = ⊢zero +⊢rename ⊢σ (⊢suc ⊢M) = ⊢suc (⊢rename ⊢σ ⊢M) +⊢rename ⊢σ (⊢pred ⊢M) = ⊢pred (⊢rename ⊢σ ⊢M) +⊢rename ⊢σ (⊢if0 ⊢L ⊢M ⊢N) + = ⊢if0 (⊢rename ⊢σ ⊢L) (⊢rename ⊢σ ⊢M) (⊢rename ⊢σ ⊢N) +⊢rename ⊢σ (⊢Y ⊢M) = ⊢Y (⊢rename ⊢σ ⊢M) \end{code} ### Substitution preserves types \begin{code} -{- -⊢subst : ∀ {Γ Δ xs ys ρ} - → (∀ {x} → x ∈ xs → free (ρ x) ⊆ ys) - → (∀ {x A} → x ∈ xs → Γ ∋ x `: A → Δ ⊢ ρ x `: A) - ------------------------------------------------------------- - → (∀ {M A} → free M ⊆ xs → Γ ⊢ M `: A → Δ ⊢ subst ys ρ M `: A) -⊢subst Σ ⊢ρ ⊆xs (Ax ⊢x) - = ⊢ρ (⊆xs here) ⊢x -⊢subst {Γ} {Δ} {xs} {ys} {ρ} Σ ⊢ρ ⊆xs (⊢λ {x = x} {N = N} {A = A} ⊢N) - = ⊢λ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {xs′} {ys′} {ρ′} Σ′ ⊢ρ′ ⊆xs′ ⊢N) +⊢subst : ∀ {Γ Δ ρ} + → (∀ {x A} → Γ ∋ x `: A → Δ ⊢ ρ x `: A) + ------------------------------------------------- + → (∀ {M A} → Γ ⊢ M `: A → Δ ⊢ subst ρ M `: A) +⊢subst ⊢ρ (Ax ⊢x) = ⊢ρ ⊢x +⊢subst {Γ} {Δ} {ρ} ⊢ρ (⊢λ {x = x} {N = N} {A = A} ⊢N) + = ⊢λ {x = x} {A = A} (⊢subst {Γ′} {Δ′} {ρ′} ⊢ρ′ ⊢N) where - y = fresh ys Γ′ = Γ , x `: A - Δ′ = Δ , y `: A - xs′ = x ∷ xs - ys′ = y ∷ ys - ρ′ = ρ , x ↦ ` y + Δ′ = Δ , x `: A + ρ′ = ρ , x ↦ ` x - Σ′ : ∀ {w} → w ∈ xs′ → free (ρ′ w) ⊆ ys′ - Σ′ {w} w∈′ with w ≟ x - ... | yes refl = ⊆-++₁ - ... | no w≢ = ⊆-++₂ ∘ Σ (there⁻¹ w∈′ w≢) - - ⊆xs′ : free N ⊆ xs′ - ⊆xs′ = \\-to-∷ ⊆xs + ⊢σ : ∀ {w C} → Δ ∋ w `: C → Δ′ ∋ w `: C + ⊢σ ⊢w = S {!!} ⊢w - ⊢σ : ∀ {w C} → w ∈ ys → Δ ∋ w `: C → Δ′ ∋ w `: C - ⊢σ w∈ ⊢w = S (fresh-lemma w∈) ⊢w - - ⊢ρ′ : ∀ {w C} → w ∈ xs′ → Γ′ ∋ w `: C → Δ′ ⊢ ρ′ w `: C - ⊢ρ′ {w} _ Z with w ≟ x + ⊢ρ′ : ∀ {w C} → Γ′ ∋ w `: C → Δ′ ⊢ ρ′ w `: C + ⊢ρ′ {w} Z with w ≟ x ... | yes _ = Ax Z ... | no w≢ = ⊥-elim (w≢ refl) - ⊢ρ′ {w} w∈′ (S w≢ ⊢w) with w ≟ x + ⊢ρ′ {w} (S w≢ ⊢w) with w ≟ x ... | yes refl = ⊥-elim (w≢ refl) - ... | no _ = ⊢rename {Δ} {Δ′} {ys} ⊢σ (Σ w∈) (⊢ρ w∈ ⊢w) - where - w∈ = there⁻¹ w∈′ w≢ + ... | no _ = ⊢rename {Δ} {Δ′} ⊢σ (⊢ρ ⊢w) -⊢subst Σ ⊢ρ ⊆xs (⊢L · ⊢M) - = ⊢subst Σ ⊢ρ L⊆ ⊢L · ⊢subst Σ ⊢ρ M⊆ ⊢M - where - L⊆ = trans-⊆ ⊆-++₁ ⊆xs - M⊆ = trans-⊆ ⊆-++₂ ⊆xs -⊢subst Σ ⊢ρ ⊆xs ⊢zero = ⊢zero -⊢subst Σ ⊢ρ ⊆xs (⊢suc ⊢M) = ⊢suc (⊢subst Σ ⊢ρ ⊆xs ⊢M) -⊢subst Σ ⊢ρ ⊆xs (⊢pred ⊢M) = ⊢pred (⊢subst Σ ⊢ρ ⊆xs ⊢M) -⊢subst Σ ⊢ρ ⊆xs (⊢if0 {L = L} ⊢L ⊢M ⊢N) - = ⊢if0 (⊢subst Σ ⊢ρ L⊆ ⊢L) (⊢subst Σ ⊢ρ M⊆ ⊢M) (⊢subst Σ ⊢ρ N⊆ ⊢N) - where - L⊆ = trans-⊆ ⊆-++₁ ⊆xs - M⊆ = trans-⊆ ⊆-++₁ (trans-⊆ (⊆-++₂ {free L}) ⊆xs) - N⊆ = trans-⊆ ⊆-++₂ (trans-⊆ (⊆-++₂ {free L}) ⊆xs) -⊢subst Σ ⊢ρ ⊆xs (⊢Y ⊢M) = ⊢Y (⊢subst Σ ⊢ρ ⊆xs ⊢M) +⊢subst ⊢ρ (⊢L · ⊢M) = ⊢subst ⊢ρ ⊢L · ⊢subst ⊢ρ ⊢M +⊢subst ⊢ρ ⊢zero = ⊢zero +⊢subst ⊢ρ (⊢suc ⊢M) = ⊢suc (⊢subst ⊢ρ ⊢M) +⊢subst ⊢ρ (⊢pred ⊢M) = ⊢pred (⊢subst ⊢ρ ⊢M) +⊢subst ⊢ρ (⊢if0 ⊢L ⊢M ⊢N) + = ⊢if0 (⊢subst ⊢ρ ⊢L) (⊢subst ⊢ρ ⊢M) (⊢subst ⊢ρ ⊢N) +⊢subst ⊢ρ (⊢Y ⊢M) = ⊢Y (⊢subst ⊢ρ ⊢M) +\end{code} -⊢substitution : ∀ {Γ x A N B M} → - Γ , x `: A ⊢ N `: B → - Γ ⊢ M `: A → - -------------------- - Γ ⊢ N [ x := M ] `: B +Let's look at examples. Assume `M` is closed. Example 1. + + subst (∅ , "x" ↦ M) (`λ "y" `→ ` "x") ≡ `λ "y" `→ M + +Example 2. + + subst (∅ , "y" ↦ ` "y" , "x" ↦ M) (`λ "y" `→ ` "x" · ` "y") + ≡ + `λ "y" `→ subst (∅ , "y" ↦ ` "y" , "x" ↦ M , "y" ↦ ` "y") (` "x" · ` "y") + ≡ + `λ "y" `→ (M · ` "y") + +The hypotheses of the theorem appear to be violated. Drat! + +\begin{code} +⊢substitution : ∀ {Γ x A N B M} + → Γ , x `: A ⊢ N `: B + → Γ ⊢ M `: A + ---------------------- + → Γ ⊢ N [ x := M ] `: B ⊢substitution {Γ} {x} {A} {N} {B} {M} ⊢N ⊢M = - ⊢subst {Γ′} {Γ} {xs} {ys} {ρ} Σ ⊢ρ {N} {B} ⊆xs ⊢N + ⊢subst {Γ′} {Γ} {ρ} ⊢ρ {N} {B} ⊢N where Γ′ = Γ , x `: A - xs = free N - ys = free M ++ (free N \\ x) ρ = ∅ , x ↦ M - - Σ : ∀ {w} → w ∈ xs → free (ρ w) ⊆ ys - Σ {w} w∈ y∈ with w ≟ x - ... | yes _ = ⊆-++₁ y∈ - ... | no w≢ rewrite ∈-[_] y∈ = ⊆-++₂ (∈-≢-to-\\ w∈ w≢) - - ⊢ρ : ∀ {w B} → w ∈ xs → Γ′ ∋ w `: B → Γ ⊢ ρ w `: B - ⊢ρ {w} w∈ Z with w ≟ x - ... | yes _ = ⊢M - ... | no w≢ = ⊥-elim (w≢ refl) - ⊢ρ {w} w∈ (S w≢ ⊢w) with w ≟ x - ... | yes refl = ⊥-elim (w≢ refl) - ... | no _ = Ax ⊢w - - ⊆xs : free N ⊆ xs - ⊆xs x∈ = x∈ --} + ⊢ρ : ∀ {w B} → Γ′ ∋ w `: B → Γ ⊢ ρ w `: B + ⊢ρ {w} Z with w ≟ x + ... | yes _ = ⊢M + ... | no w≢ = ⊥-elim (w≢ refl) + ⊢ρ {w} (S w≢ ⊢w) with w ≟ x + ... | yes refl = ⊥-elim (w≢ refl) + ... | no _ = Ax ⊢w \end{code} ### Preservation \begin{code} -{- preservation : ∀ {Γ M N A} → Γ ⊢ M `: A → M ⟶ N @@ -816,14 +733,12 @@ preservation (⊢if0 ⊢L ⊢M ⊢N) (ξ-if0 L⟶) = ⊢if0 (preservat preservation (⊢if0 ⊢zero ⊢M ⊢N) β-if0-zero = ⊢M preservation (⊢if0 (⊢suc ⊢V) ⊢M ⊢N) (β-if0-suc _) = ⊢N preservation (⊢Y ⊢M) (ξ-Y M⟶) = ⊢Y (preservation ⊢M M⟶) -preservation (⊢Y (⊢λ ⊢N)) (β-Y _ refl) = ⊢substitution ⊢N (⊢Y (⊢λ ⊢N)) --} +preservation (⊢Y (⊢λ ⊢N)) (β-Y refl) = ⊢substitution ⊢N (⊢Y (⊢λ ⊢N)) \end{code} ## Normalise \begin{code} -{- data Normalise {M A} (⊢M : ε ⊢ M `: A) : Set where out-of-gas : ∀ {N} → M ⟶* N → ε ⊢ N `: A → Normalise ⊢M normal : ∀ {V} → ℕ → Canonical V A → M ⟶* V → Normalise ⊢M @@ -836,6 +751,53 @@ normalise {L} (suc m) ⊢L with progress ⊢L ... | ⊢M with normalise m ⊢M ... | out-of-gas M⟶*N ⊢N = out-of-gas (L ⟶⟨ L⟶M ⟩ M⟶*N) ⊢N ... | normal n CV M⟶*V = normal n CV (L ⟶⟨ L⟶M ⟩ M⟶*V) --} \end{code} +## Sample execution + +\begin{code} +_ : plus · two · two ⟶* (`suc (`suc (`suc (`suc `zero)))) +_ = + begin + plus · two · two + ⟶⟨ ξ-·₁ (ξ-·₁ (β-Y refl)) ⟩ + (`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else + `suc (plus · (`pred (` "m")) · (` "n")))) · two · two + ⟶⟨ ξ-·₁ (β-`→ (Suc (Suc Zero))) ⟩ + (`λ "n" `→ `if0 two then ` "n" else + `suc (plus · (`pred two) · (` "n"))) · two + ⟶⟨ β-`→ (Suc (Suc Zero)) ⟩ + `if0 two then two else + `suc (plus · (`pred two) · two) + ⟶⟨ β-if0-suc (Suc Zero) ⟩ + `suc (plus · (`pred two) · two) + ⟶⟨ ξ-suc (ξ-·₁ (ξ-·₁ (β-Y refl))) ⟩ + `suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else + `suc (plus · (`pred (` "m")) · (` "n")))) · (`pred two) · two) + ⟶⟨ ξ-suc (ξ-·₁ (ξ-·₂ Fun (β-pred-suc (Suc Zero)))) ⟩ + `suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else + `suc (plus · (`pred (` "m")) · (` "n")))) · (`suc `zero) · two) + ⟶⟨ ξ-suc (ξ-·₁ (β-`→ (Suc Zero))) ⟩ + `suc ((`λ "n" `→ `if0 `suc `zero then ` "n" else + `suc (plus · (`pred (`suc `zero)) · (` "n")))) · two + ⟶⟨ ξ-suc (β-`→ (Suc (Suc Zero))) ⟩ + `suc (`if0 `suc `zero then two else + `suc (plus · (`pred (`suc `zero)) · two)) + ⟶⟨ ξ-suc (β-if0-suc Zero) ⟩ + `suc (`suc (plus · (`pred (`suc `zero)) · two)) + ⟶⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ (β-Y refl)))) ⟩ + `suc (`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else + `suc (plus · (`pred (` "m")) · (` "n")))) · (`pred (`suc `zero)) · two)) + ⟶⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₂ Fun (β-pred-suc Zero)))) ⟩ + `suc (`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else + `suc (plus · (`pred (` "m")) · (` "n")))) · `zero · two)) + ⟶⟨ ξ-suc (ξ-suc (ξ-·₁ (β-`→ Zero))) ⟩ + `suc (`suc ((`λ "n" `→ `if0 `zero then ` "n" else + `suc (plus · (`pred `zero) · (` "n"))) · two)) + ⟶⟨ ξ-suc (ξ-suc (β-`→ (Suc (Suc Zero)))) ⟩ + `suc (`suc (`if0 `zero then two else + `suc (plus · (`pred `zero) · two))) + ⟶⟨ ξ-suc (ξ-suc β-if0-zero) ⟩ + `suc (`suc (`suc (`suc `zero))) + ∎ +\end{code}