added types to error messages
This commit is contained in:
parent
d4a241ed25
commit
dce878d6e8
1 changed files with 25 additions and 21 deletions
|
@ -202,14 +202,17 @@ module Raw where
|
|||
## Type checking monad
|
||||
|
||||
\begin{code}
|
||||
Error : Set
|
||||
Error = String
|
||||
Msg : Set
|
||||
Msg = String
|
||||
|
||||
data Error : Set where
|
||||
err : Msg → Term → List Type → Error
|
||||
|
||||
TC : Set → Set
|
||||
TC A = Error ⊎ A
|
||||
|
||||
error : ∀ {A : Set} → Error → TC A
|
||||
error = inj₁
|
||||
error : ∀ {A : Set} → Msg → Term → List Type → TC A
|
||||
error msg M As = inj₁ (err msg M As)
|
||||
|
||||
return : ∀ {A : Set} → A → TC A
|
||||
return = inj₂
|
||||
|
@ -225,15 +228,12 @@ module Raw where
|
|||
_≟Tp_ : (A B : Type) → Dec (A ≡ B)
|
||||
A ≟Tp B = {!!}
|
||||
|
||||
show : Type → String
|
||||
show A = {!!}
|
||||
|
||||
data Lookup (Γ : Ctx) (x : Id) : Set where
|
||||
ok : ∀ (A : Type) → (Γ ∋ x `: A) → Lookup Γ x
|
||||
|
||||
lookup : ∀ (Γ : Ctx) (x : Id) → TC (Lookup Γ x)
|
||||
lookup ε x =
|
||||
error ("variable " ++ x ++ " not bound")
|
||||
error "variable not bound" ⌊ x ⌋ []
|
||||
lookup (Γ , x `: A) w with w ≟ x
|
||||
... | yes refl =
|
||||
return (ok A Z)
|
||||
|
@ -252,44 +252,48 @@ module Raw where
|
|||
return (ok A (Ax ⊢x))
|
||||
synth Γ (L · M) =
|
||||
do ok (A₀ `→ B) ⊢L ← synth Γ L
|
||||
where ok `ℕ _ → error "cannot apply number"
|
||||
where ok `ℕ _ → error "must apply function" (L · M) []
|
||||
ok A₁ ⊢M ← synth Γ M
|
||||
yes refl ← return (A₀ ≟Tp A₁)
|
||||
where no _ → error "types differ in application"
|
||||
where no _ → error "types differ in application" (L · M) [ A₀ , A₁ ]
|
||||
return (ok B (⊢L · ⊢M))
|
||||
synth Γ (M `: A) =
|
||||
do ⊢M ← inher Γ M A
|
||||
return (ok A (↑↓ ⊢M))
|
||||
{-# CATCHALL #-}
|
||||
synth Γ M =
|
||||
error "untypable term"
|
||||
error "untypable term" M []
|
||||
|
||||
inher Γ (`λ x `→ N) (A `→ B) =
|
||||
do ⊢N ← inher (Γ , x `: A) N B
|
||||
return (⊢λ ⊢N)
|
||||
inher Γ (`λ x `→ N) `ℕ =
|
||||
error "lambda cannot be natural"
|
||||
error "lambda cannot be natural" (`λ x `→ N) []
|
||||
inher Γ `zero `ℕ =
|
||||
do return ⊢zero
|
||||
inher Γ `zero (A `→ b) =
|
||||
error "zero cannot be function"
|
||||
return ⊢zero
|
||||
inher Γ `zero (A `→ B) =
|
||||
error "zero cannot be function" `zero [ A `→ B ]
|
||||
inher Γ (`suc M) `ℕ =
|
||||
do ⊢M ← inher Γ M `ℕ
|
||||
return (⊢suc ⊢M)
|
||||
inher Γ (`suc M) (A `→ B) =
|
||||
error "suc cannot be function"
|
||||
error "suc cannot be function" (`suc M) [ A `→ B ]
|
||||
inher Γ `case L [`zero`→ M |`suc x `→ N ] A =
|
||||
do ok `ℕ ⊢L ← synth Γ L
|
||||
where ok (_ `→ _) _ → error "cannot case on function"
|
||||
where ok (A `→ B) _ → error "cannot case on function"
|
||||
(`case L [`zero`→ M |`suc x `→ N ])
|
||||
[ A `→ B ]
|
||||
⊢M ← inher Γ M A
|
||||
⊢N ← inher (Γ , x `: `ℕ) N A
|
||||
return (⊢case ⊢L ⊢M ⊢N)
|
||||
inher Γ (`μ x `→ M) A =
|
||||
do ⊢M ← inher (Γ , x `: A) M A
|
||||
return (⊢μ ⊢M)
|
||||
{-# CATCHALL #-}
|
||||
inher Γ M A₀ =
|
||||
do ok A₁ ⊢M ← synth Γ M
|
||||
yes refl ← return (A₀ ≟Tp A₁)
|
||||
where no _ → error "inheritance and synthesis conflict"
|
||||
where no _ → error "inheritance and synthesis conflict" M [ A₀ , A₁ ]
|
||||
return (↓↑ ⊢M)
|
||||
\end{code}
|
||||
|
||||
|
|
Loading…
Reference in a new issue