diff --git a/src/Lists.lagda b/src/Lists.lagda index 330049a9..7da395f5 100644 --- a/src/Lists.lagda +++ b/src/Lists.lagda @@ -14,7 +14,7 @@ import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_; _*_) -open import Data.Nat.Properties.Simple using (distribʳ-*-+) +open import Data.Nat.Properties.Simple using (distribʳ-*-+; *-comm) \end{code} ## Lists @@ -380,33 +380,6 @@ of the first list, reversing a list in this way takes time proportional to the *square* of the length of the list, since `1 + ⋯ + n ≡ n * (n + 1) / 2`. -\begin{code} -upto : ℕ → List ℕ -upto zero = [] -upto (suc n) = suc n ∷ upto n - -sum : List ℕ → ℕ -sum [] = zero -sum (x ∷ xs) = x + sum xs - -sum-upto : ∀ (n : ℕ) → 2 * sum (upto n) ≡ n * suc n -sum-upto zero = refl -sum-upto (suc n) = {!!} -{- - begin - 2 * sum (upto (suc n)) - ≡⟨⟩ - 2 * sum (suc n ∷ upto n) - ≡⟨⟩ - 2 * (suc n + sum (upto n)) - ≡⟨ +-dist-* 2 (suc n) (sum (upto n)) ⟩ - (2 * suc n) + (2 * sum (upto n)) - ≡⟨ cong (_+_ (2 * suc n)) (sup-upto n) ⟩ - (2 * suc n) + (n * suc n) - ≡⟨ sym (+-dist-* --} -\end{code} - ## Reverse @@ -431,6 +404,45 @@ ex₆ : foldr _+_ 0 ([ 1 , 2 , 3 ]) ≡ 6 ex₆ = refl \end{code} +\begin{code} +downto : ℕ → List ℕ +downto zero = [] +downto (suc n) = suc n ∷ downto n + +sum : List ℕ → ℕ +sum = foldr _+_ 0 + +infix 6 _+ + +_+ : ℕ → ℕ → ℕ +(m +) n = m + n + +cong2 : ∀ {A B C : Set} {x x′ : A} {y y′ : B} → + (f : A → B → C) → (x ≡ x′) → (y ≡ y′) → (f x y ≡ f x′ y′) +cong2 f x≡x′ y≡y′ rewrite x≡x′ | y≡y′ = refl + +sum-downto : ∀ (n : ℕ) → sum (downto n) * 2 ≡ suc n * n +sum-downto zero = refl +sum-downto (suc n) = + begin + sum (downto (suc n)) * 2 + ≡⟨⟩ + sum (suc n ∷ downto n) * 2 + ≡⟨⟩ + (suc n + sum (downto n)) * 2 + ≡⟨ distribʳ-*-+ 2 (suc n) (sum (downto n)) ⟩ + suc n * 2 + sum (downto n) * 2 + ≡⟨ cong (suc n * 2 +) (sum-downto n) ⟩ + suc n * 2 + suc n * n + ≡⟨ cong2 _+_ (*-comm (suc n) 2) (*-comm (suc n) n) ⟩ + 2 * suc n + n * suc n + ≡⟨ sym (distribʳ-*-+ (suc n) 2 n)⟩ + (2 + n) * suc n + ∎ +\end{code} + + + \begin{code} data _∈_ {A : Set} (x : A) : List A → Set where diff --git a/src/ListsAns.lagda b/src/ListsAns.lagda new file mode 100644 index 00000000..2218490d --- /dev/null +++ b/src/ListsAns.lagda @@ -0,0 +1,56 @@ +--- +title : "Lists Answers" +layout : page +permalink : /ListsAns +--- + +\begin{code} +import Relation.Binary.PropositionalEquality as Eq +open Eq using (_≡_; refl; sym; trans; cong) +open Eq.≡-Reasoning +open import Data.Nat using (ℕ; suc; zero; _+_; _*_) +open import Data.Nat.Properties.Simple using (*-comm; distribʳ-*-+) +open import Data.List using (List; []; _∷_; _++_; foldr) + +*-distrib-+ : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p +*-distrib-+ m n p = distribʳ-*-+ p m n +\end{code} + +*Sum of count* + +\begin{code} +sum : List ℕ → ℕ +sum = foldr _+_ 0 + +countdown : ℕ → List ℕ +countdown zero = [] +countdown (suc n) = suc n ∷ countdown n + +infix 6 _+ + +_+ : ℕ → ℕ → ℕ +(m +) n = m + n + +cong2 : ∀ {A B C : Set} {x x′ : A} {y y′ : B} → + (f : A → B → C) → (x ≡ x′) → (y ≡ y′) → (f x y ≡ f x′ y′) +cong2 f x≡x′ y≡y′ rewrite x≡x′ | y≡y′ = refl + +sum-countdown : ∀ (n : ℕ) → sum (countdown n) * 2 ≡ suc n * n +sum-countdown zero = refl +sum-countdown (suc n) = + begin + sum (countdown (suc n)) * 2 + ≡⟨⟩ + sum (suc n ∷ countdown n) * 2 + ≡⟨⟩ + (suc n + sum (countdown n)) * 2 + ≡⟨ *-distrib-+ (suc n) (sum (countdown n)) 2 ⟩ + suc n * 2 + sum (countdown n) * 2 + ≡⟨ cong (suc n * 2 +) (sum-countdown n) ⟩ + suc n * 2 + suc n * n + ≡⟨ cong2 _+_ (*-comm (suc n) 2) (*-comm (suc n) n) ⟩ + 2 * suc n + n * suc n + ≡⟨ sym (*-distrib-+ 2 n (suc n))⟩ + (2 + n) * suc n + ∎ +\end{code} diff --git a/src/PropertiesAns.lagda b/src/PropertiesAns.lagda index 9883bf94..06c6da6f 100644 --- a/src/PropertiesAns.lagda +++ b/src/PropertiesAns.lagda @@ -6,7 +6,7 @@ permalink : /PropertiesAns \begin{code} open import Data.Nat using (ℕ; suc; zero; _+_; _*_; _∸_) -open import Properties using (+-assoc; +-comm) +open import Data.Nat.Properties.Simple using (+-assoc; +-comm) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) \end{code}