fixed suc_

This commit is contained in:
Jeremy Siek 2020-03-27 11:35:26 -04:00
parent 724ec85423
commit e51e255d8d

View file

@ -681,7 +681,7 @@ Here is the representation of naturals encoded with de Bruijn indexes:
`zero = ƛ ƛ (# 0) `zero = ƛ ƛ (# 0)
`suc_ : ∀ {Γ} → (Γ ⊢ ★) → (Γ ⊢ ★) `suc_ : ∀ {Γ} → (Γ ⊢ ★) → (Γ ⊢ ★)
`suc_ M = (ƛ ƛ ƛ (# 1 · # 2)) · M `suc_ M = (ƛ ƛ ƛ (# 1 · (# 2 · # 1 · # 0))) · M
case : ∀ {Γ} → (Γ ⊢ ★) → (Γ ⊢ ★) → (Γ , ★ ⊢ ★) → (Γ ⊢ ★) case : ∀ {Γ} → (Γ ⊢ ★) → (Γ ⊢ ★) → (Γ , ★ ⊢ ★) → (Γ ⊢ ★)
case L M N = L · (ƛ N) · M case L M N = L · (ƛ N) · M
@ -691,6 +691,24 @@ definitions. The successor branch expects an additional variable to
be in scope (as indicated by its type), so it is converted to an be in scope (as indicated by its type), so it is converted to an
ordinary term using lambda abstraction. ordinary term using lambda abstraction.
Applying successor to the zero indeed reduces to the Church numeral
for one.
```
_ : eval (gas 100) (`suc_ {∅} `zero) ≡
steps
((ƛ (ƛ (ƛ (` (S Z)) · ((` (S (S Z))) · (` (S Z)) · (` Z))))) · (ƛ (ƛ (` Z)))
—→⟨ β ⟩
ƛ (ƛ (` (S Z)) · ((ƛ (ƛ (` Z))) · (` (S Z)) · (` Z)))
—→⟨ ζ (ζ (ξ₂ (ξ₁ β))) ⟩
ƛ (ƛ (` (S Z)) · ((ƛ (` Z)) · (` Z)))
—→⟨ ζ (ζ (ξ₂ β)) ⟩
ƛ (ƛ (` (S Z)) · (` Z))
∎)
(done (ƛ (ƛ ( (` (S Z)) · ( (` Z))))))
_ = refl
```
We can also define fixpoint. Using named terms, we define: We can also define fixpoint. Using named terms, we define:
μ f = (ƛ x ⇒ f · (x · x)) · (ƛ x ⇒ f · (x · x)) μ f = (ƛ x ⇒ f · (x · x)) · (ƛ x ⇒ f · (x · x))
@ -729,6 +747,7 @@ Because `` `suc `` is now a defined term rather than primitive,
it is no longer the case that `plus · two · two` reduces to `four`, it is no longer the case that `plus · two · two` reduces to `four`,
but they do both reduce to the same normal term. but they do both reduce to the same normal term.
#### Exercise `plus-eval` (practice) #### Exercise `plus-eval` (practice)
Use the evaluator to confirm that `plus · two · two` and `four` Use the evaluator to confirm that `plus · two · two` and `four`