added letters to repository
This commit is contained in:
parent
45a4be4fa6
commit
e739cd7029
3 changed files with 371 additions and 23 deletions
135
src/Scoped.lagda
135
src/Scoped.lagda
|
@ -14,20 +14,23 @@ module Scoped where
|
|||
import Relation.Binary.PropositionalEquality as Eq
|
||||
open Eq using (_≡_; refl; sym; trans; cong)
|
||||
-- open Eq.≡-Reasoning
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_)
|
||||
open import Data.Product using (_×_; proj₁; proj₂; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Relation.Nullary.Decidable using (map)
|
||||
open import Relation.Nullary.Negation using (contraposition)
|
||||
open import Relation.Nullary.Product using (_×-dec_)
|
||||
open import Data.Unit using (⊤; tt)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Function using (_∘_)
|
||||
open import Function.Equivalence using (_⇔_; equivalence)
|
||||
\end{code}
|
||||
|
||||
## Syntax
|
||||
|
||||
\begin{code}
|
||||
infixr 4 _⇒_
|
||||
infixr 5 _⇒_
|
||||
|
||||
data Type : Set where
|
||||
o : Type
|
||||
|
@ -45,25 +48,67 @@ data Exp : Env → Type → Set where
|
|||
var : ∀ {Γ : Env} {A : Type} → Var Γ A → Exp Γ A
|
||||
abs : ∀ {Γ : Env} {A B : Type} → Exp (Γ , A) B → Exp Γ (A ⇒ B)
|
||||
app : ∀ {Γ : Env} {A B : Type} → Exp Γ (A ⇒ B) → Exp Γ A → Exp Γ B
|
||||
\end{code}
|
||||
|
||||
type : Type → Set
|
||||
type o = ℕ
|
||||
type (A ⇒ B) = type A → type B
|
||||
|
||||
env : Env → Set
|
||||
env ε = ⊤
|
||||
env (Γ , A) = env Γ × type A
|
||||
## Untyped DeBruijn
|
||||
|
||||
\begin{code}
|
||||
data DB : Set where
|
||||
var : ℕ → DB
|
||||
abs : DB → DB
|
||||
app : DB → DB → DB
|
||||
\end{code}
|
||||
|
||||
|
||||
# PH representation
|
||||
|
||||
\begin{code}
|
||||
data PH (V : Type → Set) : Type → Set where
|
||||
var : ∀ {A : Type} → V A → PH V A
|
||||
abs : ∀ {A B : Type} → (V A → PH V B) → PH V (A ⇒ B)
|
||||
app : ∀ {A B : Type} → PH V (A ⇒ B) → PH V A → PH V B
|
||||
data PH (X : Type → Set) : Type → Set where
|
||||
var : ∀ {A : Type} → X A → PH X A
|
||||
abs : ∀ {A B : Type} → (X A → PH X B) → PH X (A ⇒ B)
|
||||
app : ∀ {A B : Type} → PH X (A ⇒ B) → PH X A → PH X B
|
||||
\end{code}
|
||||
|
||||
|
||||
# Convert PHOAS to DB
|
||||
|
||||
\begin{code}
|
||||
PH→DB : ∀ {A} → (∀ {X} → PH X A) → DB
|
||||
PH→DB M = h M 0
|
||||
where
|
||||
K : Type → Set
|
||||
K A = ℕ
|
||||
|
||||
h : ∀ {A} → PH K A → ℕ → DB
|
||||
h (var k) j = var (j ∸ k)
|
||||
h (abs N) j = abs (h (N (j + 1)) (j + 1))
|
||||
h (app L M) j = app (h L j) (h M j)
|
||||
\end{code}
|
||||
|
||||
|
||||
# Test examples
|
||||
|
||||
\begin{code}
|
||||
Church : Type
|
||||
Church = (o ⇒ o) ⇒ o ⇒ o
|
||||
|
||||
twoExp : Exp ε Church
|
||||
twoExp = (abs (abs (app (var (S Z)) (app (var (S Z)) (var Z)))))
|
||||
|
||||
twoPH : ∀ {X} → PH X Church
|
||||
twoPH = (abs (λ f → (abs (λ x → (app (var f) (app (var f) (var x)))))))
|
||||
|
||||
twoDB : DB
|
||||
twoDB = (abs (abs (app (var 1) (app (var 1) (var 0)))))
|
||||
|
||||
ex : PH→DB twoPH ≡ twoDB
|
||||
ex = refl
|
||||
\end{code}
|
||||
|
||||
## Convert Phoas to Exp
|
||||
|
||||
\begin{code}
|
||||
data Extends : (Γ : Env) → (Δ : Env) → Set where
|
||||
Z : ∀ {Γ : Env} → Extends Γ Γ
|
||||
S : ∀ {A : Type} {Γ Δ : Env} → Extends Γ Δ → Extends Γ (Δ , A)
|
||||
|
@ -72,20 +117,56 @@ extract : ∀ {A : Type} {Γ Δ : Env} → Extends (Γ , A) Δ → Var Δ A
|
|||
extract Z = Z
|
||||
extract (S k) = S (extract k)
|
||||
|
||||
\end{code}
|
||||
_≟T_ : ∀ (A B : Type) → Dec (A ≡ B)
|
||||
o ≟T o = yes refl
|
||||
o ≟T (A′ ⇒ B′) = no (λ())
|
||||
(A ⇒ B) ≟T o = no (λ())
|
||||
(A ⇒ B) ≟T (A′ ⇒ B′) = map (equivalence obv1 obv2) ((A ≟T A′) ×-dec (B ≟T B′))
|
||||
where
|
||||
obv1 : ∀ {A B A′ B′ : Type} → (A ≡ A′) × (B ≡ B′) → A ⇒ B ≡ A′ ⇒ B′
|
||||
obv1 ⟨ refl , refl ⟩ = refl
|
||||
obv2 : ∀ {A B A′ B′ : Type} → A ⇒ B ≡ A′ ⇒ B′ → (A ≡ A′) × (B ≡ B′)
|
||||
obv2 refl = ⟨ refl , refl ⟩
|
||||
|
||||
toDB : ∀ {A : Type} → (Γ : Env) → PH (λ (B : Type) → (Δ : Env) → Extends (Γ , B) Δ) A → Exp Γ A
|
||||
toDB Γ (var x) = var (extract (x Γ))
|
||||
toDB {A ⇒ B} Γ (abs N) = abs {!toDB (Γ , A) (N ?) !}
|
||||
toDB Γ (app L M) = app (toDB Γ L) (toDB Γ M)
|
||||
_≟_ : ∀ (Γ Δ : Env) → Dec (Γ ≡ Δ)
|
||||
ε ≟ ε = yes refl
|
||||
ε ≟ (Γ , A) = no (λ())
|
||||
(Γ , A) ≟ ε = no (λ())
|
||||
(Γ , A) ≟ (Δ , B) = map (equivalence obv1 obv2) ((Γ ≟ Δ) ×-dec (A ≟T B))
|
||||
where
|
||||
obv1 : ∀ {Γ Δ A B} → (Γ ≡ Δ) × (A ≡ B) → (Γ , A) ≡ (Δ , B)
|
||||
obv1 ⟨ refl , refl ⟩ = refl
|
||||
obv2 : ∀ {Γ Δ A B} → (Γ , A) ≡ (Δ , B) → (Γ ≡ Δ) × (A ≡ B)
|
||||
obv2 refl = ⟨ refl , refl ⟩
|
||||
|
||||
postulate
|
||||
impossible : ∀ {A : Set} → A
|
||||
|
||||
compare : ∀ (A : Type) (Γ Δ : Env) → Extends (Γ , A) Δ
|
||||
compare A Γ Δ with (Γ , A) ≟ Δ
|
||||
compare A Γ Δ | yes refl = Z
|
||||
compare A Γ (Δ , B) | no ΓA≠ΔB = S (compare A Γ Δ)
|
||||
compare A Γ ε | no ΓA≠ΔB = impossible
|
||||
|
||||
PH→Exp : ∀ {A : Type} → (∀ {X} → PH X A) → Exp ε A
|
||||
PH→Exp M = h M ε
|
||||
where
|
||||
K : Type → Set
|
||||
K A = Env
|
||||
|
||||
h : ∀ {A} → PH K A → (Δ : Env) → Exp Δ A
|
||||
h {A} (var Γ) Δ = var (extract (compare A Γ Δ))
|
||||
h {A ⇒ B} (abs N) Δ = abs (h (N Δ) (Δ , A))
|
||||
h (app L M) Δ = app (h L Δ) (h M Δ)
|
||||
|
||||
test : PH→Exp twoPH ≡ twoExp
|
||||
test = refl
|
||||
\end{code}
|
||||
|
||||
|
||||
# Test code
|
||||
|
||||
\begin{code}
|
||||
Church : Type
|
||||
Church = (o ⇒ o) ⇒ o ⇒ o
|
||||
|
||||
plus : ∀ {Γ : Env} → Exp Γ (Church ⇒ Church ⇒ Church)
|
||||
plus = (abs (abs (abs (abs (app (app (var (S (S (S Z)))) (var (S Z))) (app (app (var (S (S Z))) (var (S Z))) (var Z)))))))
|
||||
|
||||
|
@ -103,6 +184,14 @@ four = (app (app plus two) two)
|
|||
# Denotational semantics
|
||||
|
||||
\begin{code}
|
||||
type : Type → Set
|
||||
type o = ℕ
|
||||
type (A ⇒ B) = type A → type B
|
||||
|
||||
env : Env → Set
|
||||
env ε = ⊤
|
||||
env (Γ , A) = env Γ × type A
|
||||
|
||||
lookup : ∀ {Γ : Env} {A : Type} → Var Γ A → env Γ → type A
|
||||
lookup Z ⟨ ρ , v ⟩ = v
|
||||
lookup (S n) ⟨ ρ , v ⟩ = lookup n ρ
|
||||
|
@ -112,8 +201,8 @@ eval (var n) ρ = lookup n ρ
|
|||
eval (abs N) ρ = λ{ v → eval N ⟨ ρ , v ⟩ }
|
||||
eval (app L M) ρ = eval L ρ (eval M ρ)
|
||||
|
||||
ex : eval four tt suc zero ≡ 4
|
||||
ex = refl
|
||||
ex₀ : eval four tt suc zero ≡ 4
|
||||
ex₀ = refl
|
||||
\end{code}
|
||||
|
||||
# Operational semantics - with substitution a la Darais (31 lines)
|
||||
|
|
170
src/extra/DeBruijn-agda-list-2.lagda
Normal file
170
src/extra/DeBruijn-agda-list-2.lagda
Normal file
|
@ -0,0 +1,170 @@
|
|||
The typed DeBruijn representation is well known, as are typed PHOAS
|
||||
and untyped DeBruijn. It is easy to convert PHOAS to untyped
|
||||
DeBruijn. Is it known how to convert PHOAS to typed DeBruijn?
|
||||
|
||||
Yours, -- P
|
||||
|
||||
|
||||
## Imports
|
||||
|
||||
\begin{code}
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_)
|
||||
open import Data.Product using (_×_; proj₁; proj₂; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Relation.Nullary.Decidable using (map)
|
||||
open import Relation.Nullary.Negation using (contraposition)
|
||||
open import Relation.Nullary.Product using (_×-dec_)
|
||||
open import Data.Unit using (⊤; tt)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Function using (_∘_)
|
||||
open import Function.Equivalence using (_⇔_; equivalence)
|
||||
\end{code}
|
||||
|
||||
## Typed DeBruijn
|
||||
|
||||
\begin{code}
|
||||
infixr 5 _⇒_
|
||||
|
||||
data Type : Set where
|
||||
o : Type
|
||||
_⇒_ : Type → Type → Type
|
||||
|
||||
data Env : Set where
|
||||
ε : Env
|
||||
_,_ : Env → Type → Env
|
||||
|
||||
data Var : Env → Type → Set where
|
||||
Z : ∀ {Γ : Env} {A : Type} → Var (Γ , A) A
|
||||
S : ∀ {Γ : Env} {A B : Type} → Var Γ B → Var (Γ , A) B
|
||||
|
||||
data Exp : Env → Type → Set where
|
||||
var : ∀ {Γ : Env} {A : Type} → Var Γ A → Exp Γ A
|
||||
abs : ∀ {Γ : Env} {A B : Type} → Exp (Γ , A) B → Exp Γ (A ⇒ B)
|
||||
app : ∀ {Γ : Env} {A B : Type} → Exp Γ (A ⇒ B) → Exp Γ A → Exp Γ B
|
||||
\end{code}
|
||||
|
||||
## Untyped DeBruijn
|
||||
|
||||
\begin{code}
|
||||
data DB : Set where
|
||||
var : ℕ → DB
|
||||
abs : DB → DB
|
||||
app : DB → DB → DB
|
||||
\end{code}
|
||||
|
||||
# PHOAS
|
||||
|
||||
\begin{code}
|
||||
data PH (X : Type → Set) : Type → Set where
|
||||
var : ∀ {A : Type} → X A → PH X A
|
||||
abs : ∀ {A B : Type} → (X A → PH X B) → PH X (A ⇒ B)
|
||||
app : ∀ {A B : Type} → PH X (A ⇒ B) → PH X A → PH X B
|
||||
\end{code}
|
||||
|
||||
# Convert PHOAS to DB
|
||||
|
||||
\begin{code}
|
||||
PH→DB : ∀ {A} → (∀ {X} → PH X A) → DB
|
||||
PH→DB M = h M 0
|
||||
where
|
||||
K : Type → Set
|
||||
K A = ℕ
|
||||
|
||||
h : ∀ {A} → PH K A → ℕ → DB
|
||||
h (var k) j = var (j ∸ (k + 1))
|
||||
h (abs N) j = abs (h (N j) (j + 1))
|
||||
h (app L M) j = app (h L j) (h M j)
|
||||
\end{code}
|
||||
|
||||
# Test examples
|
||||
|
||||
\begin{code}
|
||||
Church : Type
|
||||
Church = (o ⇒ o) ⇒ o ⇒ o
|
||||
|
||||
twoExp : Exp ε Church
|
||||
twoExp = (abs (abs (app (var (S Z)) (app (var (S Z)) (var Z)))))
|
||||
|
||||
twoPH : ∀ {X} → PH X Church
|
||||
twoPH = (abs (λ f → (abs (λ x → (app (var f) (app (var f) (var x)))))))
|
||||
|
||||
twoDB : DB
|
||||
twoDB = (abs (abs (app (var 1) (app (var 1) (var 0)))))
|
||||
|
||||
ex : PH→DB twoPH ≡ twoDB
|
||||
ex = refl
|
||||
\end{code}
|
||||
|
||||
## Test environments and types for equality
|
||||
|
||||
\begin{code}
|
||||
_≟T_ : ∀ (A B : Type) → Dec (A ≡ B)
|
||||
o ≟T o = yes refl
|
||||
o ≟T (A′ ⇒ B′) = no (λ())
|
||||
(A ⇒ B) ≟T o = no (λ())
|
||||
(A ⇒ B) ≟T (A′ ⇒ B′) = map (equivalence obv1 obv2) ((A ≟T A′) ×-dec (B ≟T B′))
|
||||
where
|
||||
obv1 : ∀ {A B A′ B′ : Type} → (A ≡ A′) × (B ≡ B′) → A ⇒ B ≡ A′ ⇒ B′
|
||||
obv1 ⟨ refl , refl ⟩ = refl
|
||||
obv2 : ∀ {A B A′ B′ : Type} → A ⇒ B ≡ A′ ⇒ B′ → (A ≡ A′) × (B ≡ B′)
|
||||
obv2 refl = ⟨ refl , refl ⟩
|
||||
|
||||
_≟_ : ∀ (Γ Δ : Env) → Dec (Γ ≡ Δ)
|
||||
ε ≟ ε = yes refl
|
||||
ε ≟ (Γ , A) = no (λ())
|
||||
(Γ , A) ≟ ε = no (λ())
|
||||
(Γ , A) ≟ (Δ , B) = map (equivalence obv1 obv2) ((Γ ≟ Δ) ×-dec (A ≟T B))
|
||||
where
|
||||
obv1 : ∀ {Γ Δ A B} → (Γ ≡ Δ) × (A ≡ B) → (Γ , A) ≡ (Δ , B)
|
||||
obv1 ⟨ refl , refl ⟩ = refl
|
||||
obv2 : ∀ {Γ Δ A B} → (Γ , A) ≡ (Δ , B) → (Γ ≡ Δ) × (A ≡ B)
|
||||
obv2 refl = ⟨ refl , refl ⟩
|
||||
\end{code}
|
||||
|
||||
|
||||
## Convert Phoas to Exp
|
||||
|
||||
\begin{code}
|
||||
postulate
|
||||
impossible : ∀ {A : Set} → A
|
||||
|
||||
compare : ∀ (A : Type) (Γ Δ : Env) → Var Δ A -- Extends (Γ , A) Δ
|
||||
compare A Γ Δ with (Γ , A) ≟ Δ
|
||||
compare A Γ Δ | yes refl = Z
|
||||
compare A Γ (Δ , B) | no ΓA≠ΔB = S (compare A Γ Δ)
|
||||
compare A Γ ε | no ΓA≠ΔB = impossible
|
||||
|
||||
PH→Exp : ∀ {A : Type} → (∀ {X} → PH X A) → Exp ε A
|
||||
PH→Exp M = h M ε
|
||||
where
|
||||
K : Type → Set
|
||||
K A = Env
|
||||
|
||||
h : ∀ {A} → PH K A → (Δ : Env) → Exp Δ A
|
||||
h {A} (var Γ) Δ = var (compare A Γ Δ)
|
||||
h {A ⇒ B} (abs N) Δ = abs (h (N Δ) (Δ , A))
|
||||
h (app L M) Δ = app (h L Δ) (h M Δ)
|
||||
|
||||
ex₁ : PH→Exp twoPH ≡ twoExp
|
||||
ex₁ = refl
|
||||
\end{code}
|
||||
|
||||
## When one environment extends another
|
||||
|
||||
We could get rid of the use of `impossible` above if we could prove
|
||||
that `Extends (Γ , A) Δ` in the `(var Γ)` case of the definition of `h`.
|
||||
|
||||
\begin{code}
|
||||
data Extends : (Γ : Env) → (Δ : Env) → Set where
|
||||
Z : ∀ {Γ : Env} → Extends Γ Γ
|
||||
S : ∀ {A : Type} {Γ Δ : Env} → Extends Γ Δ → Extends Γ (Δ , A)
|
||||
|
||||
extract : ∀ {A : Type} {Γ Δ : Env} → Extends (Γ , A) Δ → Var Δ A
|
||||
extract Z = Z
|
||||
extract (S k) = S (extract k)
|
||||
\end{code}
|
||||
|
||||
|
||||
|
89
src/extra/DeBruijn-agda-list.lagda
Normal file
89
src/extra/DeBruijn-agda-list.lagda
Normal file
|
@ -0,0 +1,89 @@
|
|||
The typed DeBruijn representation is well known, as are typed PHOAS
|
||||
and untyped DeBruijn. It is easy to convert PHOAS to untyped
|
||||
DeBruijn. Is it known how to convert PHOAS to typed DeBruijn?
|
||||
|
||||
Yours, -- P
|
||||
|
||||
|
||||
## Imports
|
||||
|
||||
\begin{code}
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_)
|
||||
\end{code}
|
||||
|
||||
## Typed DeBruijn
|
||||
|
||||
\begin{code}
|
||||
infixr 4 _⇒_
|
||||
|
||||
data Type : Set where
|
||||
o : Type
|
||||
_⇒_ : Type → Type → Type
|
||||
|
||||
data Env : Set where
|
||||
ε : Env
|
||||
_,_ : Env → Type → Env
|
||||
|
||||
data Var : Env → Type → Set where
|
||||
Z : ∀ {Γ : Env} {A : Type} → Var (Γ , A) A
|
||||
S : ∀ {Γ : Env} {A B : Type} → Var Γ B → Var (Γ , A) B
|
||||
|
||||
data Exp : Env → Type → Set where
|
||||
var : ∀ {Γ : Env} {A : Type} → Var Γ A → Exp Γ A
|
||||
abs : ∀ {Γ : Env} {A B : Type} → Exp (Γ , A) B → Exp Γ (A ⇒ B)
|
||||
app : ∀ {Γ : Env} {A B : Type} → Exp Γ (A ⇒ B) → Exp Γ A → Exp Γ B
|
||||
\end{code}
|
||||
|
||||
## Untyped DeBruijn
|
||||
|
||||
\begin{code}
|
||||
data DB : Set where
|
||||
var : ℕ → DB
|
||||
abs : DB → DB
|
||||
app : DB → DB → DB
|
||||
\end{code}
|
||||
|
||||
# PHOAS
|
||||
|
||||
\begin{code}
|
||||
data PH (X : Type → Set) : Type → Set where
|
||||
var : ∀ {A : Type} → X A → PH X A
|
||||
abs : ∀ {A B : Type} → (X A → PH X B) → PH X (A ⇒ B)
|
||||
app : ∀ {A B : Type} → PH X (A ⇒ B) → PH X A → PH X B
|
||||
\end{code}
|
||||
|
||||
# Convert PHOAS to DB
|
||||
|
||||
\begin{code}
|
||||
PH→DB : ∀ {A} → (∀ {X} → PH X A) → DB
|
||||
PH→DB M = h M 0
|
||||
where
|
||||
K : Type → Set
|
||||
K A = ℕ
|
||||
|
||||
h : ∀ {A} → PH K A → ℕ → DB
|
||||
h (var k) j = var (j ∸ k)
|
||||
h (abs N) j = abs (h (N (j + 1)) (j + 1))
|
||||
h (app L M) j = app (h L j) (h M j)
|
||||
\end{code}
|
||||
|
||||
# Test examples
|
||||
|
||||
\begin{code}
|
||||
Church : Type
|
||||
Church = (o ⇒ o) ⇒ o ⇒ o
|
||||
|
||||
twoExp : Exp ε Church
|
||||
twoExp = (abs (abs (app (var (S Z)) (app (var (S Z)) (var Z)))))
|
||||
|
||||
twoPH : ∀ {X} → PH X Church
|
||||
twoPH = (abs (λ f → (abs (λ x → (app (var f) (app (var f) (var x)))))))
|
||||
|
||||
twoDB : DB
|
||||
twoDB = (abs (abs (app (var 1) (app (var 1) (var 0)))))
|
||||
|
||||
ex : PH→DB twoPH ≡ twoDB
|
||||
ex = refl
|
||||
\end{code}
|
||||
|
Loading…
Reference in a new issue