a couple of more holes filled

This commit is contained in:
wadler 2018-04-16 14:50:51 -03:00
parent a6c9b3e009
commit ee889a0fba

View file

@ -288,7 +288,8 @@ fresh = foldr _⊔_ 0 ∘ map suc
⊔-lemma : ∀ {x xs} → x ∈ xs → suc x ≤ fresh xs ⊔-lemma : ∀ {x xs} → x ∈ xs → suc x ≤ fresh xs
⊔-lemma {x} {.x ∷ xs} (here refl) = m≤m⊔n (suc x) (fresh xs) ⊔-lemma {x} {.x ∷ xs} (here refl) = m≤m⊔n (suc x) (fresh xs)
⊔-lemma {x} {y ∷ xs} (there x∈) = ≤-trans (⊔-lemma {x} {xs} x∈) (n≤m⊔n (suc y) (fresh xs)) ⊔-lemma {x} {y ∷ xs} (there x∈) = ≤-trans (⊔-lemma {x} {xs} x∈)
(n≤m⊔n (suc y) (fresh xs))
fresh-lemma : ∀ {x xs} → x ∈ xs → fresh xs ≢ x fresh-lemma : ∀ {x xs} → x ∈ xs → fresh xs ≢ x
fresh-lemma x∈ refl = 1+n≰n (⊔-lemma x∈) fresh-lemma x∈ refl = 1+n≰n (⊔-lemma x∈)
@ -452,8 +453,18 @@ Wow! A lot of work to prove stuff that is obvious. Gulp!
∷drop : ∀ {v vs ys} → v ∷ vs ⊆ ys → vs ⊆ ys ∷drop : ∀ {v vs ys} → v ∷ vs ⊆ ys → vs ⊆ ys
∷drop ⊆ys ∈vs = ⊆ys (there ∈vs) ∷drop ⊆ys ∈vs = ⊆ys (there ∈vs)
i : ∀ {w x xs} → w ∈ xs → x ≢ w → w ∈ xs \\ x
i {w} {x} {.w ∷ xs} (here refl) x≢w with x ≟ w
... | yes refl = ⊥-elim (x≢w refl)
... | no _ = here refl
i {w} {x} {y ∷ xs} (there w∈) x≢w with x ≟ y
... | yes refl = (i {w} {x} {xs} w∈ x≢w)
... | no _ = there (i {w} {x} {xs} w∈ x≢w)
j : ∀ {x xs ys} → xs \\ x ⊆ ys → xs ⊆ x ∷ ys j : ∀ {x xs ys} → xs \\ x ⊆ ys → xs ⊆ x ∷ ys
j = {!!} j {x} {xs} {ys} ⊆ys {w} w∈ with x ≟ w
... | yes refl = here refl
... | no x≢w = there (⊆ys (i w∈ x≢w))
⊢rename : ∀ {Γ Δ xs} → (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ∋ x ⦂ A) → ⊢rename : ∀ {Γ Δ xs} → (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ∋ x ⦂ A) →
(∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A) (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A)