
UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

TYPES AND SEMANTICS FOR PROGRAMMING LANGUAGES

Saturday 1 st April 2017

00:00 to 00:00

INSTRUCTIONS TO CANDIDATES

Answer QUESTION 1 and ONE other question.

Question 1 is COMPULSORY. If both QUESTION 2 and QUESTION 3 are
answered, only QUESTION 2 will be marked.

All questions carry equal weight.

CALCULATORS MAY NOT BE USED IN THIS EXAMINATION

Year 4 Courses

Convener: ITO-Will-Determine
External Examiners: ITO-Will-Determine

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

1. THIS QUESTION IS COMPULSORY
This question uses the library definition of list in Agda. Here is an informal definition
of the predicates ∈ and ⊆. (In Emacs, you can type ∈ as \in and ⊆ as \subseteq.) ⊆

here
x ∈ (x :: xs)

there
x ∈ ys

x ∈ (y :: ys)

done
[] ⊆ ys

keep
xs ⊆ ys

(x :: xs) ⊆ (x :: ys)
drop

xs ⊆ ys
xs ⊆ (y :: ys)

(a) Formalise the definition above. [10 marks]
(b) Prove each of the following.

(i) 2 ∈ [1,2,3]
(ii) [1,3] ⊆ [1,2,3,4] [5 marks]

(c) Prove the following.

If xs ⊆ ys then z ∈ xs implies z ∈ ys for all z. [10 marks]

Page 1 of 4

2. ANSWER EITHER THIS QUESTION OR QUESTION 3
You will be provided with a definition of intrinsically-typed lambda calculus in Agda.
Consider constructs satisfying the following rules, written in extrinsically-typed style.
Typing:

leaf
Γ ⊢ M ⦂ A

Γ ⊢ leafM ⦂ Tree A
branch

Γ ⊢ M ⦂ Tree A
Γ ⊢ N ⦂ Tree A

Γ ⊢ M branchN ⦂ Tree A

caseT

Γ ⊢ L ⦂ Tree A
Γ , x ⦂ A ⊢ M ⦂ B

Γ , y ⦂ Tree A , z ⦂ Tree A ⊢ N ⦂ B
Γ ⊢ case L [leaf x ⇒ M | y branch z ⇒ N] ⦂ B

Values:

V-leaf
Value V

Value (leaf V)
V-branch

Value V
ValueW

Value (V branchW)

Reduction:

�-leaf
M ⟶M ′

leafM ⟶ leafM ′

�-branch1
M ⟶M ′

M branchN ⟶M ′ branchN
�-branch2

Value V
N ⟶ N ′

V branchN ⟶ V branchN ′

�-caseT
L⟶ L′

case L [leaf x ⇒ M | y branch z ⇒ N] ⟶

case L′ [leaf x ⇒ M | y branch z ⇒ N]

�-leaf
Value V

case (leaf V) [leaf x ⇒ M | y branch z ⇒ N] ⟶M [x := V]

�-branch

Value V
ValueW

case (V branchW) [leaf x ⇒ M | y branch z ⇒ N] ⟶ N [y := V] [z :=W]

(a) Extend the given definition to formalise the evaluation and typing rules, including
any other required definitions. [12 marks]

Page 2 of 4

(b) Prove progress. You will be provided with a proof of progress for the simply-
typed lambda calculus that you may extend. [13 marks]

Please delimit any code you add as follows.

-- begin
-- end

Page 3 of 4

3. ANSWER EITHER THIS QUESTION OR QUESTION 2
Youwill be providedwith a definition of inference for extrinsically-typed lambda calcu-
lus in Agda. Consider constructs satisfying the following rules, written in extrinsically-
typed style that support bidirectional inference.
Typing:

delay
Γ ⊢ M ↓ A

Γ ⊢ delayM ↓ Lift A

force
Γ ⊢ L ↑ Lift A
Γ ⊢ force L ↑ A

(a) Extend the given definition to formalise the typing rules, and update the definition
of equality on types. [10 marks]

(b) Extend the code to support type inference for the new features. [15 marks]

Please delimit any code you add as follows.

-- begin
-- end

Page 4 of 4

