{-# OPTIONS --without-K #-} open import Relation.Binary.PropositionalEquality open import Data.Product open import Data.Unit open import Data.Empty open import Function -- some HoTT-inspired combinators _&_ = cong _⁻¹ = sym _◾_ = trans coe : {A B : Set} → A ≡ B → A → B coe refl a = a _⊗_ : ∀ {A B : Set}{f g : A → B}{a a'} → f ≡ g → a ≡ a' → f a ≡ g a' refl ⊗ refl = refl infix 6 _⁻¹ infixr 4 _◾_ infixl 9 _&_ infixl 8 _⊗_ -- Syntax -------------------------------------------------------------------------------- infixr 4 _⇒_ infixr 4 _,_ data Ty : Set where ι : Ty _⇒_ : Ty → Ty → Ty data Con : Set where ∙ : Con _,_ : Con → Ty → Con data _∈_ (A : Ty) : Con → Set where vz : ∀ {Γ} → A ∈ (Γ , A) vs : ∀ {B Γ} → A ∈ Γ → A ∈ (Γ , B) data Tm Γ : Ty → Set where var : ∀ {A} → A ∈ Γ → Tm Γ A lam : ∀ {A B} → Tm (Γ , A) B → Tm Γ (A ⇒ B) app : ∀ {A B} → Tm Γ (A ⇒ B) → Tm Γ A → Tm Γ B -- Embedding -------------------------------------------------------------------------------- -- Order-preserving embedding data OPE : Con → Con → Set where ∙ : OPE ∙ ∙ drop : ∀ {A Γ Δ} → OPE Γ Δ → OPE (Γ , A) Δ keep : ∀ {A Γ Δ} → OPE Γ Δ → OPE (Γ , A) (Δ , A) -- OPE is a category idₑ : ∀ {Γ} → OPE Γ Γ idₑ {∙} = ∙ idₑ {Γ , A} = keep (idₑ {Γ}) wk : ∀ {A Γ} → OPE (Γ , A) Γ wk = drop idₑ _∘ₑ_ : ∀ {Γ Δ Σ} → OPE Δ Σ → OPE Γ Δ → OPE Γ Σ σ ∘ₑ ∙ = σ σ ∘ₑ drop δ = drop (σ ∘ₑ δ) drop σ ∘ₑ keep δ = drop (σ ∘ₑ δ) keep σ ∘ₑ keep δ = keep (σ ∘ₑ δ) idlₑ : ∀ {Γ Δ}(σ : OPE Γ Δ) → idₑ ∘ₑ σ ≡ σ idlₑ ∙ = refl idlₑ (drop σ) = drop & idlₑ σ idlₑ (keep σ) = keep & idlₑ σ idrₑ : ∀ {Γ Δ}(σ : OPE Γ Δ) → σ ∘ₑ idₑ ≡ σ idrₑ ∙ = refl idrₑ (drop σ) = drop & idrₑ σ idrₑ (keep σ) = keep & idrₑ σ assₑ : ∀ {Γ Δ Σ Ξ}(σ : OPE Σ Ξ)(δ : OPE Δ Σ)(ν : OPE Γ Δ) → (σ ∘ₑ δ) ∘ₑ ν ≡ σ ∘ₑ (δ ∘ₑ ν) assₑ σ δ ∙ = refl assₑ σ δ (drop ν) = drop & assₑ σ δ ν assₑ σ (drop δ) (keep ν) = drop & assₑ σ δ ν assₑ (drop σ) (keep δ) (keep ν) = drop & assₑ σ δ ν assₑ (keep σ) (keep δ) (keep ν) = keep & assₑ σ δ ν ∈ₑ : ∀ {A Γ Δ} → OPE Γ Δ → A ∈ Δ → A ∈ Γ ∈ₑ ∙ v = v ∈ₑ (drop σ) v = vs (∈ₑ σ v) ∈ₑ (keep σ) vz = vz ∈ₑ (keep σ) (vs v) = vs (∈ₑ σ v) ∈-idₑ : ∀ {A Γ}(v : A ∈ Γ) → ∈ₑ idₑ v ≡ v ∈-idₑ vz = refl ∈-idₑ (vs v) = vs & ∈-idₑ v ∈-∘ₑ : ∀ {A Γ Δ Σ}(σ : OPE Δ Σ)(δ : OPE Γ Δ)(v : A ∈ Σ) → ∈ₑ (σ ∘ₑ δ) v ≡ ∈ₑ δ (∈ₑ σ v) ∈-∘ₑ ∙ ∙ v = refl ∈-∘ₑ σ (drop δ) v = vs & ∈-∘ₑ σ δ v ∈-∘ₑ (drop σ) (keep δ) v = vs & ∈-∘ₑ σ δ v ∈-∘ₑ (keep σ) (keep δ) vz = refl ∈-∘ₑ (keep σ) (keep δ) (vs v) = vs & ∈-∘ₑ σ δ v Tmₑ : ∀ {A Γ Δ} → OPE Γ Δ → Tm Δ A → Tm Γ A Tmₑ σ (var v) = var (∈ₑ σ v) Tmₑ σ (lam t) = lam (Tmₑ (keep σ) t) Tmₑ σ (app f a) = app (Tmₑ σ f) (Tmₑ σ a) Tm-idₑ : ∀ {A Γ}(t : Tm Γ A) → Tmₑ idₑ t ≡ t Tm-idₑ (var v) = var & ∈-idₑ v Tm-idₑ (lam t) = lam & Tm-idₑ t Tm-idₑ (app f a) = app & Tm-idₑ f ⊗ Tm-idₑ a Tm-∘ₑ : ∀ {A Γ Δ Σ}(σ : OPE Δ Σ)(δ : OPE Γ Δ)(t : Tm Σ A) → Tmₑ (σ ∘ₑ δ) t ≡ Tmₑ δ (Tmₑ σ t) Tm-∘ₑ σ δ (var v) = var & ∈-∘ₑ σ δ v Tm-∘ₑ σ δ (lam t) = lam & Tm-∘ₑ (keep σ) (keep δ) t Tm-∘ₑ σ δ (app f a) = app & Tm-∘ₑ σ δ f ⊗ Tm-∘ₑ σ δ a -- Theory of substitution & embedding -------------------------------------------------------------------------------- infixr 6 _ₑ∘ₛ_ _ₛ∘ₑ_ _∘ₛ_ data Sub (Γ : Con) : Con → Set where ∙ : Sub Γ ∙ _,_ : ∀ {A : Ty}{Δ : Con} → Sub Γ Δ → Tm Γ A → Sub Γ (Δ , A) _ₛ∘ₑ_ : ∀ {Γ Δ Σ} → Sub Δ Σ → OPE Γ Δ → Sub Γ Σ ∙ ₛ∘ₑ δ = ∙ (σ , t) ₛ∘ₑ δ = σ ₛ∘ₑ δ , Tmₑ δ t _ₑ∘ₛ_ : ∀ {Γ Δ Σ} → OPE Δ Σ → Sub Γ Δ → Sub Γ Σ ∙ ₑ∘ₛ δ = δ drop σ ₑ∘ₛ (δ , t) = σ ₑ∘ₛ δ keep σ ₑ∘ₛ (δ , t) = σ ₑ∘ₛ δ , t dropₛ : ∀ {A Γ Δ} → Sub Γ Δ → Sub (Γ , A) Δ dropₛ σ = σ ₛ∘ₑ wk keepₛ : ∀ {A Γ Δ} → Sub Γ Δ → Sub (Γ , A) (Δ , A) keepₛ σ = dropₛ σ , var vz ⌜_⌝ᵒᵖᵉ : ∀ {Γ Δ} → OPE Γ Δ → Sub Γ Δ ⌜ ∙ ⌝ᵒᵖᵉ = ∙ ⌜ drop σ ⌝ᵒᵖᵉ = dropₛ ⌜ σ ⌝ᵒᵖᵉ ⌜ keep σ ⌝ᵒᵖᵉ = keepₛ ⌜ σ ⌝ᵒᵖᵉ ∈ₛ : ∀ {A Γ Δ} → Sub Γ Δ → A ∈ Δ → Tm Γ A ∈ₛ (σ , t) vz = t ∈ₛ (σ , t)(vs v) = ∈ₛ σ v Tmₛ : ∀ {A Γ Δ} → Sub Γ Δ → Tm Δ A → Tm Γ A Tmₛ σ (var v) = ∈ₛ σ v Tmₛ σ (lam t) = lam (Tmₛ (keepₛ σ) t) Tmₛ σ (app f a) = app (Tmₛ σ f) (Tmₛ σ a) idₛ : ∀ {Γ} → Sub Γ Γ idₛ {∙} = ∙ idₛ {Γ , A} = (idₛ {Γ} ₛ∘ₑ drop idₑ) , var vz _∘ₛ_ : ∀ {Γ Δ Σ} → Sub Δ Σ → Sub Γ Δ → Sub Γ Σ ∙ ∘ₛ δ = ∙ (σ , t) ∘ₛ δ = σ ∘ₛ δ , Tmₛ δ t assₛₑₑ : ∀ {Γ Δ Σ Ξ}(σ : Sub Σ Ξ)(δ : OPE Δ Σ)(ν : OPE Γ Δ) → (σ ₛ∘ₑ δ) ₛ∘ₑ ν ≡ σ ₛ∘ₑ (δ ∘ₑ ν) assₛₑₑ ∙ δ ν = refl assₛₑₑ (σ , t) δ ν = _,_ & assₛₑₑ σ δ ν ⊗ (Tm-∘ₑ δ ν t ⁻¹) assₑₛₑ : ∀ {Γ Δ Σ Ξ}(σ : OPE Σ Ξ)(δ : Sub Δ Σ)(ν : OPE Γ Δ) → (σ ₑ∘ₛ δ) ₛ∘ₑ ν ≡ σ ₑ∘ₛ (δ ₛ∘ₑ ν) assₑₛₑ ∙ δ ν = refl assₑₛₑ (drop σ) (δ , t) ν = assₑₛₑ σ δ ν assₑₛₑ (keep σ) (δ , t) ν = (_, Tmₑ ν t) & assₑₛₑ σ δ ν idlₑₛ : ∀ {Γ Δ}(σ : Sub Γ Δ) → idₑ ₑ∘ₛ σ ≡ σ idlₑₛ ∙ = refl idlₑₛ (σ , t) = (_, t) & idlₑₛ σ idlₛₑ : ∀ {Γ Δ}(σ : OPE Γ Δ) → idₛ ₛ∘ₑ σ ≡ ⌜ σ ⌝ᵒᵖᵉ idlₛₑ ∙ = refl idlₛₑ (drop σ) = ((idₛ ₛ∘ₑ_) ∘ drop) & idrₑ σ ⁻¹ ◾ assₛₑₑ idₛ σ wk ⁻¹ ◾ dropₛ & idlₛₑ σ idlₛₑ (keep σ) = (_, var vz) & (assₛₑₑ idₛ wk (keep σ) ◾ ((idₛ ₛ∘ₑ_) ∘ drop) & (idlₑ σ ◾ idrₑ σ ⁻¹) ◾ assₛₑₑ idₛ σ wk ⁻¹ ◾ (_ₛ∘ₑ wk) & idlₛₑ σ ) idrₑₛ : ∀ {Γ Δ}(σ : OPE Γ Δ) → σ ₑ∘ₛ idₛ ≡ ⌜ σ ⌝ᵒᵖᵉ idrₑₛ ∙ = refl idrₑₛ (drop σ) = assₑₛₑ σ idₛ wk ⁻¹ ◾ dropₛ & idrₑₛ σ idrₑₛ (keep σ) = (_, var vz) & (assₑₛₑ σ idₛ wk ⁻¹ ◾ (_ₛ∘ₑ wk) & idrₑₛ σ) ∈-ₑ∘ₛ : ∀ {A Γ Δ Σ}(σ : OPE Δ Σ)(δ : Sub Γ Δ)(v : A ∈ Σ) → ∈ₛ (σ ₑ∘ₛ δ) v ≡ ∈ₛ δ (∈ₑ σ v) ∈-ₑ∘ₛ ∙ δ v = refl ∈-ₑ∘ₛ (drop σ) (δ , t) v = ∈-ₑ∘ₛ σ δ v ∈-ₑ∘ₛ (keep σ) (δ , t) vz = refl ∈-ₑ∘ₛ (keep σ) (δ , t) (vs v) = ∈-ₑ∘ₛ σ δ v Tm-ₑ∘ₛ : ∀ {A Γ Δ Σ}(σ : OPE Δ Σ)(δ : Sub Γ Δ)(t : Tm Σ A) → Tmₛ (σ ₑ∘ₛ δ) t ≡ Tmₛ δ (Tmₑ σ t) Tm-ₑ∘ₛ σ δ (var v) = ∈-ₑ∘ₛ σ δ v Tm-ₑ∘ₛ σ δ (lam t) = lam & ((λ x → Tmₛ (x , var vz) t) & assₑₛₑ σ δ wk ◾ Tm-ₑ∘ₛ (keep σ) (keepₛ δ) t) Tm-ₑ∘ₛ σ δ (app f a) = app & Tm-ₑ∘ₛ σ δ f ⊗ Tm-ₑ∘ₛ σ δ a ∈-ₛ∘ₑ : ∀ {A Γ Δ Σ}(σ : Sub Δ Σ)(δ : OPE Γ Δ)(v : A ∈ Σ) → ∈ₛ (σ ₛ∘ₑ δ) v ≡ Tmₑ δ (∈ₛ σ v) ∈-ₛ∘ₑ (σ , _) δ vz = refl ∈-ₛ∘ₑ (σ , _) δ (vs v) = ∈-ₛ∘ₑ σ δ v Tm-ₛ∘ₑ : ∀ {A Γ Δ Σ}(σ : Sub Δ Σ)(δ : OPE Γ Δ)(t : Tm Σ A) → Tmₛ (σ ₛ∘ₑ δ) t ≡ Tmₑ δ (Tmₛ σ t) Tm-ₛ∘ₑ σ δ (var v) = ∈-ₛ∘ₑ σ δ v Tm-ₛ∘ₑ σ δ (lam t) = lam & ((λ x → Tmₛ (x , var vz) t) & (assₛₑₑ σ δ wk ◾ (σ ₛ∘ₑ_) & (drop & (idrₑ δ ◾ idlₑ δ ⁻¹)) ◾ assₛₑₑ σ wk (keep δ) ⁻¹) ◾ Tm-ₛ∘ₑ (keepₛ σ) (keep δ) t) Tm-ₛ∘ₑ σ δ (app f a) = app & Tm-ₛ∘ₑ σ δ f ⊗ Tm-ₛ∘ₑ σ δ a assₛₑₛ : ∀ {Γ Δ Σ Ξ}(σ : Sub Σ Ξ)(δ : OPE Δ Σ)(ν : Sub Γ Δ) → (σ ₛ∘ₑ δ) ∘ₛ ν ≡ σ ∘ₛ (δ ₑ∘ₛ ν) assₛₑₛ ∙ δ ν = refl assₛₑₛ (σ , t) δ ν = _,_ & assₛₑₛ σ δ ν ⊗ (Tm-ₑ∘ₛ δ ν t ⁻¹) assₛₛₑ : ∀ {Γ Δ Σ Ξ}(σ : Sub Σ Ξ)(δ : Sub Δ Σ)(ν : OPE Γ Δ) → (σ ∘ₛ δ) ₛ∘ₑ ν ≡ σ ∘ₛ (δ ₛ∘ₑ ν) assₛₛₑ ∙ δ ν = refl assₛₛₑ (σ , t) δ ν = _,_ & assₛₛₑ σ δ ν ⊗ (Tm-ₛ∘ₑ δ ν t ⁻¹) ∈-idₛ : ∀ {A Γ}(v : A ∈ Γ) → ∈ₛ idₛ v ≡ var v ∈-idₛ vz = refl ∈-idₛ (vs v) = ∈-ₛ∘ₑ idₛ wk v ◾ Tmₑ wk & ∈-idₛ v ◾ (var ∘ vs) & ∈-idₑ v ∈-∘ₛ : ∀ {A Γ Δ Σ}(σ : Sub Δ Σ)(δ : Sub Γ Δ)(v : A ∈ Σ) → ∈ₛ (σ ∘ₛ δ) v ≡ Tmₛ δ (∈ₛ σ v) ∈-∘ₛ (σ , _) δ vz = refl ∈-∘ₛ (σ , _) δ (vs v) = ∈-∘ₛ σ δ v Tm-idₛ : ∀ {A Γ}(t : Tm Γ A) → Tmₛ idₛ t ≡ t Tm-idₛ (var v) = ∈-idₛ v Tm-idₛ (lam t) = lam & Tm-idₛ t Tm-idₛ (app f a) = app & Tm-idₛ f ⊗ Tm-idₛ a Tm-∘ₛ : ∀ {A Γ Δ Σ}(σ : Sub Δ Σ)(δ : Sub Γ Δ)(t : Tm Σ A) → Tmₛ (σ ∘ₛ δ) t ≡ Tmₛ δ (Tmₛ σ t) Tm-∘ₛ σ δ (var v) = ∈-∘ₛ σ δ v Tm-∘ₛ σ δ (lam t) = lam & ((λ x → Tmₛ (x , var vz) t) & (assₛₛₑ σ δ wk ◾ (σ ∘ₛ_) & (idlₑₛ (dropₛ δ) ⁻¹) ◾ assₛₑₛ σ wk (keepₛ δ) ⁻¹) ◾ Tm-∘ₛ (keepₛ σ) (keepₛ δ) t) Tm-∘ₛ σ δ (app f a) = app & Tm-∘ₛ σ δ f ⊗ Tm-∘ₛ σ δ a idrₛ : ∀ {Γ Δ}(σ : Sub Γ Δ) → σ ∘ₛ idₛ ≡ σ idrₛ ∙ = refl idrₛ (σ , t) = _,_ & idrₛ σ ⊗ Tm-idₛ t idlₛ : ∀ {Γ Δ}(σ : Sub Γ Δ) → idₛ ∘ₛ σ ≡ σ idlₛ ∙ = refl idlₛ (σ , t) = (_, t) & (assₛₑₛ idₛ wk (σ , t) ◾ (idₛ ∘ₛ_) & idlₑₛ σ ◾ idlₛ σ) -- Reduction -------------------------------------------------------------------------------- data _~>_ {Γ} : ∀ {A} → Tm Γ A → Tm Γ A → Set where β : ∀ {A B}(t : Tm (Γ , A) B) t' → app (lam t) t' ~> Tmₛ (idₛ , t') t lam : ∀ {A B}{t t' : Tm (Γ , A) B} → t ~> t' → lam t ~> lam t' app₁ : ∀ {A B}{f}{f' : Tm Γ (A ⇒ B)}{a} → f ~> f' → app f a ~> app f' a app₂ : ∀ {A B}{f : Tm Γ (A ⇒ B)} {a a'} → a ~> a' → app f a ~> app f a' infix 3 _~>_ ~>ₛ : ∀ {Γ Δ A}{t t' : Tm Γ A}(σ : Sub Δ Γ) → t ~> t' → Tmₛ σ t ~> Tmₛ σ t' ~>ₛ σ (β t t') = coe ((app (lam (Tmₛ (keepₛ σ) t)) (Tmₛ σ t') ~>_) & (Tm-∘ₛ (keepₛ σ) (idₛ , Tmₛ σ t') t ⁻¹ ◾ (λ x → Tmₛ (x , Tmₛ σ t') t) & (assₛₑₛ σ wk (idₛ , Tmₛ σ t') ◾ ((σ ∘ₛ_) & idlₑₛ idₛ ◾ idrₛ σ) ◾ idlₛ σ ⁻¹) ◾ Tm-∘ₛ (idₛ , t') σ t)) (β (Tmₛ (keepₛ σ) t) (Tmₛ σ t')) ~>ₛ σ (lam step) = lam (~>ₛ (keepₛ σ) step) ~>ₛ σ (app₁ step) = app₁ (~>ₛ σ step) ~>ₛ σ (app₂ step) = app₂ (~>ₛ σ step) ~>ₑ : ∀ {Γ Δ A}{t t' : Tm Γ A}(σ : OPE Δ Γ) → t ~> t' → Tmₑ σ t ~> Tmₑ σ t' ~>ₑ σ (β t t') = coe ((app (lam (Tmₑ (keep σ) t)) (Tmₑ σ t') ~>_) & (Tm-ₑ∘ₛ (keep σ) (idₛ , Tmₑ σ t') t ⁻¹ ◾ (λ x → Tmₛ (x , Tmₑ σ t') t) & (idrₑₛ σ ◾ idlₛₑ σ ⁻¹) ◾ Tm-ₛ∘ₑ (idₛ , t') σ t)) (β (Tmₑ (keep σ) t) (Tmₑ σ t')) ~>ₑ σ (lam step) = lam (~>ₑ (keep σ) step) ~>ₑ σ (app₁ step) = app₁ (~>ₑ σ step) ~>ₑ σ (app₂ step) = app₂ (~>ₑ σ step) Tmₑ~> : ∀ {Γ Δ A}{t : Tm Γ A}{σ : OPE Δ Γ}{t'} → Tmₑ σ t ~> t' → ∃ λ t'' → (t ~> t'') × (Tmₑ σ t'' ≡ t') Tmₑ~> {t = var x} () Tmₑ~> {t = lam t} (lam step) with Tmₑ~> step ... | t'' , (p , refl) = lam t'' , lam p , refl Tmₑ~> {t = app (var v) a} (app₁ ()) Tmₑ~> {t = app (var v) a} (app₂ step) with Tmₑ~> step ... | t'' , (p , refl) = app (var v) t'' , app₂ p , refl Tmₑ~> {t = app (lam f) a} {σ} (β _ _) = Tmₛ (idₛ , a) f , β _ _ , Tm-ₛ∘ₑ (idₛ , a) σ f ⁻¹ ◾ (λ x → Tmₛ (x , Tmₑ σ a) f) & (idlₛₑ σ ◾ idrₑₛ σ ⁻¹) ◾ Tm-ₑ∘ₛ (keep σ) (idₛ , Tmₑ σ a) f Tmₑ~> {t = app (lam f) a} (app₁ (lam step)) with Tmₑ~> step ... | t'' , (p , refl) = app (lam t'') a , app₁ (lam p) , refl Tmₑ~> {t = app (lam f) a} (app₂ step) with Tmₑ~> step ... | t'' , (p , refl) = app (lam f) t'' , app₂ p , refl Tmₑ~> {t = app (app f a) a'} (app₁ step) with Tmₑ~> step ... | t'' , (p , refl) = app t'' a' , app₁ p , refl Tmₑ~> {t = app (app f a) a''} (app₂ step) with Tmₑ~> step ... | t'' , (p , refl) = app (app f a) t'' , app₂ p , refl -- Strong normalization/neutrality definition -------------------------------------------------------------------------------- data SN {Γ A} (t : Tm Γ A) : Set where sn : (∀ {t'} → t ~> t' → SN t') → SN t SNₑ→ : ∀ {Γ Δ A}{t : Tm Γ A}(σ : OPE Δ Γ) → SN t → SN (Tmₑ σ t) SNₑ→ σ (sn s) = sn λ {t'} step → let (t'' , (p , q)) = Tmₑ~> step in coe (SN & q) (SNₑ→ σ (s p)) SNₑ← : ∀ {Γ Δ A}{t : Tm Γ A}(σ : OPE Δ Γ) → SN (Tmₑ σ t) → SN t SNₑ← σ (sn s) = sn λ step → SNₑ← σ (s (~>ₑ σ step)) SN-app₁ : ∀ {Γ A B}{f : Tm Γ (A ⇒ B)}{a} → SN (app f a) → SN f SN-app₁ (sn s) = sn λ f~>f' → SN-app₁ (s (app₁ f~>f')) neu : ∀ {Γ A} → Tm Γ A → Set neu (lam _) = ⊥ neu _ = ⊤ neuₑ : ∀ {Γ Δ A}(σ : OPE Δ Γ)(t : Tm Γ A) → neu t → neu (Tmₑ σ t) neuₑ σ (lam t) nt = nt neuₑ σ (var v) nt = tt neuₑ σ (app f a) nt = tt -- The actual proof, by Kripke logical predicate -------------------------------------------------------------------------------- Tmᴾ : ∀ {Γ A} → Tm Γ A → Set Tmᴾ {Γ}{ι} t = SN t Tmᴾ {Γ}{A ⇒ B} t = ∀ {Δ}(σ : OPE Δ Γ){a} → Tmᴾ a → Tmᴾ (app (Tmₑ σ t) a) data Subᴾ {Γ} : ∀ {Δ} → Sub Γ Δ → Set where ∙ : Subᴾ ∙ _,_ : ∀ {A Δ}{σ : Sub Γ Δ}{t : Tm Γ A}(σᴾ : Subᴾ σ)(tᴾ : Tmᴾ t) → Subᴾ (σ , t) Tmᴾₑ : ∀ {Γ Δ A}{t : Tm Γ A}(σ : OPE Δ Γ) → Tmᴾ t → Tmᴾ (Tmₑ σ t) Tmᴾₑ {A = ι} σ tᴾ = SNₑ→ σ tᴾ Tmᴾₑ {A = A ⇒ B}{t} σ tᴾ δ aᴾ rewrite Tm-∘ₑ σ δ t ⁻¹ = tᴾ (σ ∘ₑ δ) aᴾ Subᴾₑ : ∀ {Γ Δ Σ}{σ : Sub Δ Σ}(δ : OPE Γ Δ) → Subᴾ σ → Subᴾ (σ ₛ∘ₑ δ) Subᴾₑ σ ∙ = ∙ Subᴾₑ σ (δ , tᴾ) = Subᴾₑ σ δ , Tmᴾₑ σ tᴾ ~>ᴾ : ∀ {Γ A}{t t' : Tm Γ A} → t ~> t' → Tmᴾ t → Tmᴾ t' ~>ᴾ {A = ι} t~>t' (sn tˢⁿ) = tˢⁿ t~>t' ~>ᴾ {A = A ⇒ B} t~>t' tᴾ = λ σ aᴾ → ~>ᴾ (app₁ (~>ₑ σ t~>t')) (tᴾ σ aᴾ) mutual -- quote qᴾ : ∀ {Γ A}{t : Tm Γ A} → Tmᴾ t → SN t qᴾ {A = ι} tᴾ = tᴾ qᴾ {A = A ⇒ B} tᴾ = SNₑ← wk $ SN-app₁ (qᴾ $ tᴾ wk (uᴾ (var vz) (λ ()))) -- unquote uᴾ : ∀ {Γ A}(t : Tm Γ A){nt : neu t} → (∀ {t'} → t ~> t' → Tmᴾ t') → Tmᴾ t uᴾ {Γ} {A = ι} t f = sn f uᴾ {Γ} {A ⇒ B} t {nt} f {Δ} σ {a} aᴾ = uᴾ (app (Tmₑ σ t) a) (go (Tmₑ σ t) (neuₑ σ t nt) f' a aᴾ (qᴾ aᴾ)) where f' : ∀ {t'} → Tmₑ σ t ~> t' → Tmᴾ t' f' step δ aᴾ with Tmₑ~> step ... | t'' , step' , refl rewrite Tm-∘ₑ σ δ t'' ⁻¹ = f step' (σ ∘ₑ δ) aᴾ go : ∀ {Γ A B}(t : Tm Γ (A ⇒ B)) → neu t → (∀ {t'} → t ~> t' → Tmᴾ t') → ∀ a → Tmᴾ a → SN a → ∀ {t'} → app t a ~> t' → Tmᴾ t' go _ () _ _ _ _ (β _ _) go t nt f a aᴾ sna (app₁ {f' = f'} step) = coe ((λ x → Tmᴾ (app x a)) & Tm-idₑ f') (f step idₑ aᴾ) go t nt f a aᴾ (sn aˢⁿ) (app₂ {a' = a'} step) = uᴾ (app t a') (go t nt f a' (~>ᴾ step aᴾ) (aˢⁿ step)) fundThm-∈ : ∀ {Γ A}(v : A ∈ Γ) → ∀ {Δ}{σ : Sub Δ Γ} → Subᴾ σ → Tmᴾ (∈ₛ σ v) fundThm-∈ vz (σᴾ , tᴾ) = tᴾ fundThm-∈ (vs v) (σᴾ , tᴾ) = fundThm-∈ v σᴾ fundThm-lam : ∀ {Γ A B} (t : Tm (Γ , A) B) → SN t → (∀ {a} → Tmᴾ a → Tmᴾ (Tmₛ (idₛ , a) t)) → ∀ a → SN a → Tmᴾ a → Tmᴾ (app (lam t) a) fundThm-lam {Γ} t (sn tˢⁿ) hyp a (sn aˢⁿ) aᴾ = uᴾ (app (lam t) a) λ {(β _ _) → hyp aᴾ; (app₁ (lam {t' = t'} t~>t')) → fundThm-lam t' (tˢⁿ t~>t') (λ aᴾ → ~>ᴾ (~>ₛ _ t~>t') (hyp aᴾ)) a (sn aˢⁿ) aᴾ; (app₂ a~>a') → fundThm-lam t (sn tˢⁿ) hyp _ (aˢⁿ a~>a') (~>ᴾ a~>a' aᴾ)} fundThm : ∀ {Γ A}(t : Tm Γ A) → ∀ {Δ}{σ : Sub Δ Γ} → Subᴾ σ → Tmᴾ (Tmₛ σ t) fundThm (var v) σᴾ = fundThm-∈ v σᴾ fundThm (lam {A} t) {σ = σ} σᴾ δ {a} aᴾ rewrite Tm-ₛ∘ₑ (keepₛ σ) (keep δ) t ⁻¹ | assₛₑₑ σ (wk {A}) (keep δ) | idlₑ δ = fundThm-lam (Tmₛ (σ ₛ∘ₑ drop δ , var vz) t) (qᴾ (fundThm t (Subᴾₑ (drop δ) σᴾ , uᴾ (var vz) (λ ())))) (λ aᴾ → coe (Tmᴾ & sub-sub-lem) (fundThm t (Subᴾₑ δ σᴾ , aᴾ))) a (qᴾ aᴾ) aᴾ where sub-sub-lem : ∀ {a} → Tmₛ (σ ₛ∘ₑ δ , a) t ≡ Tmₛ (idₛ , a) (Tmₛ (σ ₛ∘ₑ drop δ , var vz) t) sub-sub-lem {a} = (λ x → Tmₛ (x , a) t) & (idrₛ (σ ₛ∘ₑ δ) ⁻¹ ◾ assₛₑₛ σ δ idₛ ◾ assₛₑₛ σ (drop δ) (idₛ , a) ⁻¹) ◾ Tm-∘ₛ (σ ₛ∘ₑ drop δ , var vz) (idₛ , a) t fundThm (app f a) {σ = σ} σᴾ rewrite Tm-idₑ (Tmₛ σ f) ⁻¹ = fundThm f σᴾ idₑ (fundThm a σᴾ) idₛᴾ : ∀ {Γ} → Subᴾ (idₛ {Γ}) idₛᴾ {∙} = ∙ idₛᴾ {Γ , A} = Subᴾₑ wk idₛᴾ , uᴾ (var vz) (λ ()) strongNorm : ∀ {Γ A}(t : Tm Γ A) → SN t strongNorm t = qᴾ (coe (Tmᴾ & Tm-idₛ t) (fundThm t idₛᴾ))