
Programming Language Foundations in Agda

Wen Kokkea, Jeremy G. Siekb, Philip Wadlera,∗

aUniversity of Edinburgh, 10 Crichton Street, EH8 9AB, Edinburgh
bIndiana University, 700 N Woodlawn Ave, Bloomington, IN 47408, USA

Abstract

One of the leading textbooks for formal methods is Software Foundations
(SF), written by Benjamin Pierce in collaboration with others, and based on
Coq. After five years using SF in the classroom, we came to the conclusion
that Coq is not the best vehicle for this purpose, as too much of the course
needs to focus on learning tactics for proof derivation, to the cost of learning
programming language theory. Accordingly, we have written a new textbook,
Programming Language Foundations in Agda (PLFA). PLFA covers much of the
same ground as SF, although it is not a slavish imitation.

What did we learn from writing PLFA? First, that it is possible. One might
expect that without proof tactics that the proofs become too long, but in fact
proofs in PLFA are about the same length as those in SF. Proofs in Coq require
an interactive environment to be understood, while proofs in Agda can be read
on the page. Second, that constructive proofs of preservation and progress give
immediate rise to a prototype evaluator. This fact is obvious in retrospect but it
is not exploited in SF (which instead provides a separate normalise tactic) nor
can we find it in the literature. Third, that using extrinsically-typed terms is
far less perspicuous than using intrinsically-typed terms. SF uses the former
presentation, while PLFA presents both; the former uses about 1.6 as many
lines of Agda code as the latter, roughly the golden ratio.

The textbook is written as a literate Agda script, and can be found here:

http://plfa.inf.ed.ac.uk

Keywords: Agda, Coq, lambda calculus, dependent types.

1. Introduction

The most profound connection between logic and computation is a pun.
The doctrine of Propositions as Types asserts that a certain kind of formal struc-
ture may be read in two ways: either as a proposition in logic or as a type in

∗Corresponding author
Email addresses: wen.kokke@ed.ac.uk (Wen Kokke), jsiek@indiana.edu (Jeremy G. Siek),

wadler@inf.ed.ac.uk (Philip Wadler)

Preprint submitted to Elsevier March 12, 2020



computing. Further, a related structure may be read as either the proof of the
proposition or as a programme of the corresponding type. Further still, simpli-
fication of proofs corresponds to evaluation of programs.

Accordingly, the title of this paper, and the corresponding textbook, Pro-
gramming Language Foundations in Agda (hence, PLFA) also has two readings. It
may be parsed as “(Programming Language) Foundations in Agda” or “Pro-
gramming (Language Foundations) in Agda”—specifications in the proof as-
sistant Agda both describe programming languages and are themselves pro-
grammes.

Since 2013, one of us (Philip) has taught a course on Types and Semantics
for Programming Languages to fourth-year undergraduates and masters stu-
dents at the University of Edinburgh. An earlier version of that course was
based on Types and Programming Languages by Pierce (2002), but this version
was taught from its successor, Software Foundations (hence, SF) by Pierce et al.
(2010), which is based on the proof assistance Coq (Huet et al., 1997). We are
convinced by the claim of Pierce (2009), made in his ICFP Keynote Lambda, The
Ultimate TA, that basing a course around a proof assistant aids learning.

However, after five years of experience, Philip came to the conclusion that
Coq is not the best vehicle. Too much of the course needs to focus on learning
tactics for proof derivation, to the cost of learning the fundamentals of pro-
gramming language theory. Every concept has to be learned twice: e.g., both
the product data type, and the corresponding tactics for introduction and elimi-
nation of conjunctions. The rules Coq applies to generate induction hypotheses
can sometimes seem mysterious. While the notation construct permits pleas-
ingly flexible syntax, it can be confusing that the same concept must always
be given two names, e.g., both subst N x M and N [x := M]. Names of tactics
are sometimes short and sometimes long; naming conventions in the standard
library can be wildly inconsistent. Propositions as types as a foundation of proof
is present but hidden.

We found ourselves keen to recast the course in Agda (Bove et al., 2009). In
Agda, there is no longer any need to learn about tactics: there is just dependently-
typed programming, plain and simple. Introduction is always by a constructor,
elimination is always by pattern matching. Induction is no longer a mysterious
separate concept, but corresponds to the familiar notion of recursion. Mixfix
syntax is flexible while using just one name for each concept, e.g., substitution
is _[_:=_]. The standard library is not perfect, but there is a fair attempt at
consistency. Propositions as types as a foundation of proof is on proud display.

Alas, there is no textbook for programming language theory in Agda. Ver-
ified Functional Programming in Agda by (Stump, 2016) covers related ground,
but focuses more on programming with dependent types than on the theory of
programming languages.

The original goal was to simply adapt Software Foundations, maintaining the
same text but transposing the code from Coq to Agda. But it quickly became
clear that after five years in the classroom Philip had his own ideas about how
to present the material. They say you should never write a book unless you
cannot not write the book, and Philip soon found that this was a book he could

2



not not write.
Philip considered himself fortunate that his student, Wen, was keen to help.

She guided Philip as a newbie to Agda and provided an infrastructure for the
book that we found easy to use and produces pages that are a pleasure to view.
The bulk of the first draft of the book was written January–June 2018, while
Philip was on sabbatical in Rio de Janeiro. After the first draft was published,
Jeremy wrote eight additional chapters, covering aspects of operational and
denotational semantics.

This paper is the journal version of Wadler (2018). It adds two new authors,
summaries of Jeremy’s new chapters, and sections on experience with teaching
and software used to publish the book. The original text often used first person,
which here is replaced by reference to Philip.

This paper is a personal reflection, summarising what was learned in the
course of writing the textbook. Some of it reiterates advice that is well-known
to some members of the dependently-typed programming community, but
which deserves to be better known. The paper is organised as follows.

Section 2 outlines the topics covered in PLFA, and notes what is omitted.
Section 3 compares Agda and Coq as vehicles for pedagogy. Before writing

the book, it was not obvious that it was even possible; conceivably, without
tactics some of the proofs might balloon in size. In fact, it turns out that for
the results in PLFA and SF, the proofs are of roughly comparable size, and (in
our opinion) the proofs in PLFA are more readable and have a pleasing visual
structure.

Section 4 observes that constructive proofs of progress and preservation
combine trivially to produce a constructive evaluator for terms. This idea is
obvious once you have seen it, yet we cannot find it described in the literature.

Section 5 claims that extrinsically-typed terms should be avoided in favour
of intrisicly-typed terms. PLFA develops lambda calculus with both, permit-
ting a comparison. It turns out the former is less powerful—it supports sub-
stitution only for closed terms—but significantly longer—about 1.6 times as
many lines of code, roughly the golden ratio.

Section 6 describes experience teaching from the textbook. The point of
proof is perfection, and it turns out that an online final examination with access
to a proof assistant can lead to flawless student performance.

Section 7 outlines our experience publishing the book as open source in
GitHub. We were surprised at how effective this was at eliciting community
participation. A large number of people have submitted pull requests to im-
prove the book.

We argue that Agda has advantages over Coq for pedagogic purposes. Our
focus is purely on the case of a proof assistant as an aid to learning formal se-
mantics using examples of modest size. We admit up front that there are many
tasks for which Coq is better suited than Agda. A proof assistant that supports
tactics, such as Coq or Isabelle, is essential for formalising serious mathemat-
ics, such as the Four-Colour Theorem (Gonthier, 2008), the Odd-Order Theo-
rem (Gonthier et al., 2013), or Kepler’s Conjecture (Hales et al., 2017), or for
establishing correctness of software at scale, as with the CompCert compiler

3



(Leroy, 2009; Kästner et al., 2017) or the SEL4 operating system (Klein et al.,
2009; O’Connor et al., 2016).

2. Scope

PLFA is aimed at students in the last year of an undergraduate honours
programme or the first year of a master or doctorate degree. It aims to teach
the fundamentals of semantics of programming languages, with simply-typed
and untyped lambda calculi as the central examples. The textbook is written
as a literate script in Agda. As with SF, the hope is that using a proof assistant
will make the development more concrete and accessible to students, and give
them rapid feedback to find and correct misapprehensions.

The book is broken into three parts. The first part, Logical Foundations,
develops the needed formalisms. The second part, Programming Language
Foundations, introduces basic methods of operational semantics. The third
part, Denotational Semantics, introduces a simple model of the lambda calcu-
lus and its properties. (SF is divided into books, the first two of which have the
same names as the first two parts of PLFA, and cover similar material.) Part I
and Part II up to Untyped were written by Philip, Part II from Substitution and
Part III were written by Jeremy.

Each chapter has both a one-word name and a title, the one-word name
being both its module name and its file name.

Part I, Logical Foundations
Naturals: Natural numbers. Introduces the inductive definition of natural num-
bers in terms of zero and successor, and recursive definitions of addition, mul-
tiplication, and monus. Emphasis is put on how a tiny description can specify
an infinite domain.

Induction: Proof by induction. Introduces induction to prove properties such as
associativity and commutativity of addition. Also introduces dependent func-
tions to express universal quantification. Emphasis is put on the correspon-
dence between induction and recursion.

Relations: Inductive definitions of relations. Introduces inductive definitions of
less than or equal on natural numbers, and odd and even natural numbers.
Proves properties such as reflexivity, transitivity, and anti-symmetry, and that
the sum of two odd numbers is even. Emphasis is put on proof by induction
over evidence that a relation holds.

Equality: Equality and equational reasoning. Gives Martin Löf’s and Leibniz’s
definitions of equality, and proves them equivalent, and defines the notation
for equational reasoning used throughout the book.

Isomorphism: Isomorphism and embedding. Introduces isomorphism, which plays
an important role in the subsequent development. Also introduces dependent
records, lambda terms, and extensionality.

4



Connectives: Conjunction, disjunction, and implication. Introduces product, sum,
unit, empty, and function types, and their interpretations as connectives of
logic under Propositions as Types. Emphasis is put on the analogy between
these types and product, sum, unit, zero, and exponential on naturals; e.g.,
product of numbers is commutative and product of types is commutative up
to isomorphism.

Negation: Negation, with intuitionistic and classical logic. Introduces logical nega-
tion as a function into the empty type, and explains the difference between
classical and intuitionistic logic.

Quantifiers: Universals and existentials. Recaps universal quantifiers and their
correspondence to dependent functions, and introduces existential quantifiers
and their correspondence to dependent products.

Decidable: Booleans and decision procedures. Introduces booleans and decidable
types, and why the latter is to be preferred to the former.

Lists: Lists and higher-order functions. Gives two different definitions of reverse
and proves them equivalent. Introduces map and fold and their properties,
including that fold left and right are equivalent in a monoid. Introduces pred-
icates that hold for all or any member of a list, with membership as a speciali-
sation of the latter.

Part II, Programming Language Foundations
Lambda: Introduction to lambda calculus. Introduces lambda calculus, using a
representation with named variables and extrinsically typed. The language
used is PCF (Plotkin, 1977), with variables, lambda abstraction, application,
zero, successor, case over naturals, and fixpoint. Reduction is call-by-value
and restricted to closed terms.

Properties: Progress and preservation. Proves key properties of simply-typed lambda
calculus, including progress and preservation. Progress and preservation are
combined to yield an evaluator.

DeBruijn: Intrinsically-typed de Bruijn representation. Introduces de Bruijn in-
dices and the intrinsically-typed representation. Emphasis is put on the struc-
tural similarity between a term and its corresponding type derivation; in par-
ticular, de Bruijn indices correspond to the judgment that a variable is well-
typed under a given environment.

More: More constructs of simply-typed lambda calculus. Introduces product, sum,
unit, and empty types; and explains lists and let bindings. Typing and reduc-
tion rules are given informally; a few are then give formally, and the rest are
left as exercises for the reader. The intrinsically-typed representation is used.

5



Bisimulation: Relating reduction systems. Shows how to translate the language
with “let” terms to the language without, representing a let as an application of
an abstraction, and shows how to relate the source and target languages with
a bisimulation.

Inference: Bidirectional type inference. Introduces bidirectional type inference,
and applies it to convert from a representation with named variables and ex-
trinsically typed to a representation with de Bruijn indices and intrinsically
typed. Bidirectional type inference is shown to be both sound and complete.

Untyped: Untyped calculus with full normalisation. As a variation on earlier themes,
discusses an untyped (but intrinsically scoped) lambda calculus. Reduction
is call-by-name over open terms, with full normalisation (including reduction
under lambda terms). Emphasis is put on the correspondence between the
structure of a term and evidence that it is in normal form.

Substitution: in the untyped lambda calculus. Delves deeper into the properties of
simultaneous substitution, establishing the equations of the σ algebra of Abadi
et al. (1991). These equations enable a straightforward proof of the Substitution
Lemma (Barendregt, 1984), which is needed in the next chapter.

Confluence: of the untyped lambda calculus. Presents a proof of the Church-Rosser
theorem based on the classic idea of parallel reduction due to Tait and Martin-
Löf. The proof in Agda is streamlined by the use of ideas from Schäfer et al.
(2015) and Pfenning (1992).

Big-step: evaluation for call-by-name. Introduces the notion of big-step evalua-
tion, written γ ` M ⇓ V, to develop a deterministic call-by-name reduction
strategy. The main result of this chapter is a proof that big-step evaluation
implies the existence of a reduction sequence that terminates with a lambda
abstraction.

Part III, Denotational Semantics
Denotational: semantics of the untyped lambda calculus. The early denotational
semantics of the lambda calculus based on graph models (Scott, 1976; Engeler,
1981; Plotkin, 1993) and filter models (Barendregt et al., 1983) were particu-
larly simple and elegant: a function is modeled as a lookup table. This chapter
presents such a semantics using a big-step notation that is approachable to
readers familiar with operational semantics, writing γ ` M ↓ d for the evalua-
tion of a term M to denotation d in environment γ.

Compositional: the denotational semantics is compositional. The hallmark of deno-
tational semantics is that they are compositional: the meaning of each language
form is a function of the meanings of its parts. We define two functions, named
curry and apply that serve this purpose for lambda abstraction and applica-
tion. The results in this chapter include congruences for curry and apply and

6



the compositionality property for the denotational semantics. The chapter con-
cludes with a functional definition of the denotational semantics and a proof
that it is equivalent to the big-step version.

Soundness: of reduction with respect to denotational semantics. Reduction implies
denotational equality. We prove each direction of the equality, first showing
the reduction preserves denotations (subject reduction), and then showing that
reduction reflects denotations (subject expansion). The first proof is similar to
the type preservation proofs in Part II. The second goes in reverse, showing
that if M −→ N and γ ` N ↓ d, then γ ` M ↓ d .

Adequacy: of denotational semantics with respect to reduction. If a term is deno-
tationally equal to a lambda expression, then it reduces to a lambda expres-
sion. The main lemma shows that if a term’s denotation is functional, i.e.,
γ ` M ↓ (d 7→ d′), then M terminates according to the call-by-name big-step
semantics, i.e., γ′ ` M ⇓ V. A logical relation V is used to relate denota-
tions and values (i.e. closures). The implication from the big-step semantics to
reduction is proved in the Big-step chapter of Part II.

Contextual Equivalence: is implied by denotational equality. The main criteria for
behavior-preserving code transformation (such as compiler optimization or
programmer refactoring) is contextual equivalence. Two terms are contextu-
ally equivalent when they can both be placed into an arbitrary context (a pro-
gram with a hole) and the resulting programs behave the same (e.g., they both
terminate or they both diverge). This chapter ties together the previous re-
sults (Compositionality, Soundness, and Adequacy) to show that denotational
equality implies contextual equivalence. Thus, it is safe to use denotational
equality to justify code transformations.

Discussion
PLFA and SF differ in several particulars. PLFA begins with a computa-

tionally complete language, PCF, while SF begins with a minimal language,
simply-typed lambda calculus with booleans. We chose PCF because it lets
us use the same examples, based on addition and multiplication, for the early
chapters of both Part I and Part II. PLFA does not include type annotations in
terms, and uses bidirectional type inference, while SF has terms with unique
types and uses type checking. SF also covers a simple imperative language
with Hoare logic, and for lambda calculus covers subtyping, record types, mu-
table references, and normalisation—none of which are treated by PLFA. PLFA
covers an intrinsically-typed de Bruijn representation, bidirectional type infer-
ence, bisimulation, and an untyped call-by-name language with full normalisation—
none of which are treated by SF. The new part on Denotational Semantics also
covers material not treated by SF.

SF has a third volume, written by Andrew Appel, on Verified Functional
Algorithms. We are not sufficiently familiar with that volume to have a view
on whether it would be easy or hard to cover that material in Agda. And SF

7



Figure 1: PLFA, Progress (1/2)

recently added a fourth volume on random testing of Coq specifications using
QuickChick. There is currently no tool equivalent to QuickChick for Agda.

There is more material that would be desirable to include in PLFA which
was not due to limits of time, including mutable references, System F, logical
relations for parametricity, and pure type systems. We would especially like
to include pure type systems as they provide the readers with a formal model
close to the dependent types used in the book. Our attempts so far to formalise
pure type systems have proved challenging, to say the least.

3. Proofs in Agda and Coq

The introduction listed several reasons for preferring Agda over Coq. But
Coq tactics enable more compact proofs. Would it be possible for PLFA to cover
the same material as SF, or would the proofs balloon to unmanageable size?

8



Figure 2: PLFA, Progress (2/2)

9



Figure 3: SF, Progress (1/2)

As an experiment, Philip first rewrote SF’s development of simply-typed
lambda calculus (SF, Chapters Stlc and StlcProp) in Agda. He was a newbie to
Agda, and translating the entire development, sticking as closely as possible to
the development in SF, took about two days. We were pleased to discover that
the proofs remained about the same size.

There was also a pleasing surprise regarding the structure of the proofs.
While most proofs in both SF and PLFA are carried out by induction over the
evidence that a term is well typed, in SF the central proof, that substitution
preserves types, is carried out by induction on terms for a technical reason (the
context is extended by a variable binding, and hence not sufficiently “generic”
to work well with Coq’s induction tactic). In Agda, we had no trouble for-
mulating the same proof over evidence that the term is well typed, and didn’t
even notice SF’s description of the issue until we were done.

The rest of the book was relatively easy to complete. The closest to an issue
with proof size arose when proving that reduction is deterministic. There are

10



Figure 4: SF, Progress (2/2)

18 cases, one case per line. Ten of the cases deal with the situation where there
are potentially two different reductions; each case is trivially shown to be im-
possible. Five of the ten cases are redundant, as they just involve switching the
order of the arguments. We had to copy the cases nsuitably permuted. It would
be preferable to reinvoke the proof on switched arguments, but this would not
pass Agda’s termination checker since swapping the arguments doesn’t yield
a recursive call on structurally smaller arguments. The proof of determinism
in SF (Chapter Norm) is for a different language of comparable size, and has a
comparable size.

SF covers an imperative language with Hoare logic, culminating in code
that takes an imperative programme suitably decorated with preconditions
and postconditions and generates the necessary verification conditions. The
conditions are then verified by a custom tactic, where any questions of arith-

11



metic are resolved by the “omega” tactic invoking a decision procedure. The
entire exercise would be easy to repeat in Agda, save for the last step, as
Agda does not offer support for proof automation out of the box. It is cer-
tainly possible to implement proof automation in Agda—see, e.g., the auto tac-
tic by Kokke and Swierstra (2015), and the collection of tactics in Ulf Norell’s
agda-prelude1. The standard library comes equipped with solvers for equa-
tions on monoids and rings2, and a much improved solver for equalities on
rings was recently contributed by Kidney (2019). We suspect that, while Agda’s
automation would be up to verifying the generated conditions, some effort
would be require to implement the required custom tactic, and a section would
need to be added to the book to cover proof automation. For the time being,
we have decided to omit Hoare logic in order to focus on lambda calculus.

To give a flavour of how the texts compare, we show the proof of progress
for simply-typed lambda calculus from both texts. Figures 1 and 2 are taken
from PLFA, Chapter Properties, while Figures 3 and 4 are taken from SF, Chap-
ter StlcProp. Both texts are intended to be read online, and the figures show
screengrabs of the text as displayed in a browser.

PLFA puts the formal statements first, followed by informal explanation.
PLFA introduces an auxiliary relation Progress to capture progress; an exer-
cise (not shown) asks the reader to show it isomorphic to the usual formulation
with a disjunction and an existential. Layout is used to present the auxiliary
relation in inference rule form. In Agda, any line beginning with two dashes
is treated as a comment, making it easy to use a line of dashes to separate hy-
potheses from conclusion in inference rules. The proof of proposition progress
(the different case making it a distinct name) is layed out carefully. The neat in-
dented structure emphasises the case analysis, and all right-hand sides line-up
in the same column. Our hope as authors is that students read the formal proof
first, and use it as a tabular guide to the informal explanation that follows.

SF puts the informal explanation first, followed by the formal proof. The
text hides the formal proof script under an icon; the figure shows what ap-
pears when the icon is expanded. As teachers, we were aware that students
might skip the formal proof on a first reading, and we have to hope the stu-
dents return to it and step through it with an interactive tool in order to make
it intelligible. We expect the students skipped over many such proofs. This
particular proof forms the basis for a question on several exams, so we expect
most students will look at this one if not all the others.

(For those wanting more detail: In PLFA, variables and abstractions and ap-
plications in the object language are written ‘ x and λ x⇒ N and L · M. The cor-
responding typing rules are referred to by `‘ () and `λ `N and `L · `M, where
`L, `M, `N are the proofs that terms L, M, N are well typed, and ‘()‘ denotes that
there cannot be evidence that a free variable is well typed in the empty con-
text. It was decided to overload infix dot for readability, but not other symbols.

1https://github.com/UlfNorell/agda-prelude
2https://agda.github.io/agda-stdlib/Algebra.Solver.Ring.html

12



In Agda, as in Lisp, almost any sequence of characters is a name, with spaces
essential for separation.)

(In SF, variables and abstractions and applications in the object language
are written tvar x and tabs x t and tapp t1 t2. The corresponding typing
rules are referred to as T_Var and T_Abs and T_App.)

Both Coq and Agda support interactive proof. Interaction in Coq is sup-
ported by Proof General, based on Emacs, or by CoqIDE, which provides an
interactive development environment of a sort familiar to most students. In-
teraction in Agda is supported by an Emacs mode.

In Coq, interaction consists of stepping through a proof script, at each point
examining the current goal and the variables in scope, and executing a new
command in the script. Tactics are a whole sublanguage, which must be learned
in addition to the language for expressing specifications. There are many tac-
tics one can invoke in the script at each point; one menu in CoqIDE lists about
one hundred tactics one might invoke, some in alphabetic submenus. A Coq
script presents the specification proved and the tactics executed. Interaction
is recorded in a script, which the students may step through at their leisure.
SF contains some prose descriptions of stepping through scripts, but mainly
contains scripts that students are encouraged to step through on their own.

In Agda, interaction consists of writing code with holes, at each point exam-
ining the current goal and the variables in scope, and typing code or executing
an Emacs command. The number of commands available is much smaller than
with Coq, the most important ones being to show the type of the hole and the
types of the variables in scope; to typecheck the code; to do a case analysis
on a given variable; or to search for a way to fill in the hole with constructors
or variables in scope. An Agda proof consists of typed code. The interaction
is not recorded. Students may recreate it by commenting out bits of code and
introducing a hole in their place. PLFA contains some prose descriptions of
interactively building code, but mainly contains code that students can read.
They may introduce holes to interact with the code, but we expect that will be
rare.

SF encourages students to interact with all the scripts in the text. Trying
to understand a Coq proof script without running it interactively is a bit like
understanding a chess game by reading through the moves without benefit
of a board, keeping it all in your head. In contrast, PLFA provides code that
students can read. Understanding the code often requires working out the
types, but (unlike executing a Coq proof script) this is often easy to do in your
head; when it is not easy, students still have the option of interaction.

While students are keen to interact to create code, we have found they are
reluctant to interact to understand code created by others. For this reason,
we suspect this may make Agda a more suitable vehicle for teaching. Nate
Foster suggests this hypothesis is ripe to be tested empirically, perhaps using
techniques similar to those of Danas et al. (2017).

Neat layout of definitions such as that in Figure 2 in Emacs requires a
monospaced font supporting all the necessary characters. Securing one has
proved tricky. As of this writing, we use FreeMono, but it lacks a few charac-

13



ters (⦂ and ) which are loaded from fonts with a different width. Long arrows
are necessarily more than a single character wide. Instead of the unicode long
arrow, we compose reduction —→ from an em dash — and an ordinary arrow
→. Similarly for reflexive and transitive closure —↠.

4. Progress + Preservation = Evaluation

A standard approach to type soundness used by many texts, including SF
and PLFA, is to prove progress and preservation, as first suggested by Wright
and Felleisen (1994).

Theorem 1 (Progress). Given term M and type A such that ∅ ` M : A then either
M is a value or M −→ N for some term N.

Theorem 2 (Preservation). Given terms M and N and type A such that ∅ ` M : A
and M −→ N, then ∅ ` N : A.

A consequence is that when a term reduces to a value it retains the same
type. Further, well-typed terms don’t get stuck: that is, unable to reduce fur-
ther but not yet reduced to a value. The formulation neatly accommodates the
case of non-terminating reductions that never reach a value.

One useful by-product of the formal specification of a programming lan-
guage may be a prototype implementation of that language. For instance,
given a language specified by a reduction relation, such as lambda calculus,
the prototype might accept a term and apply reductions to reduce it to a value.
Typically, one might go to some extra work to create such a prototype. For
instance, SF introduces a normalize tactic for this purpose. Some formal meth-
ods frameworks, such as Redex (Felleisen et al., 2009) and K (Roşu and Şer-
bănuţă, 2010), advertise as one of their advantages that they can generate a
prototype from descriptions of the reduction rules.

Philip had been exposed to the work of the K team, as both consulted for
IOHK, a cryptocurrency firm. This put us keenly in mind of the need for ani-
mation; Philip sometime referred to this as “K-envy” or “Redex-envy”.

Philip was therefore surprised to realise that any constructive proof of progress
and preservation automatically gives rise to such a prototype. The input is a
term together with evidence the term is well-typed. (In the intrinsically-typed
case, these are the same thing.) Progress determines whether we are done, or
should take another step; preservation provides evidence that the new term
is well-typed, so we may iterate. In a language with guaranteed termination
such as Agda, we cannot iterate forever, but there are a number of well-known
techniques to address that issue; see, e.g., Bove and Capretta (2001), Capretta
(2005), or McBride (2015). We use the simplest, similar to McBride’s petrol-
driven (or step-indexed) semantics: provide a maximum number of steps to
execute; if that number proves insufficient, the evaluator returns the term it
reached, and one can resume execution by providing a new number.

Such an evaluator from PLFA is shown in Figure 5, where (inspired by cryp-
tocurrencies) the number of steps to execute is referred to as gas. All of the

14



Figure 5: PLFA, Evaluation

15



example reduction sequences in PLFA were computed by the evaluator and
then edited to improve readability; in addition, the text includes examples of
running the evaluator with its unedited output.

It is immediately obvious that progress and preservation make it trivial to
construct a prototype evaluator, and yet we cannot find such an observation in
the literature nor mentioned in an introductory text. It does not appear in SF,
which introduces a specialised normalise tactic instead. A plea to the Agda
mailing list failed to turn up any prior mentions. The closest related observa-
tion we have seen in the published literature is that evaluators can be extracted
from proofs of normalisation (Berger, 1993; Dagand and Scherer, 2015).

Some researchers are clearly familiar with the connection between progress
and preservation and animation. In private correspondence, Bob Harper re-
ferred to it as the pas de deux, a dance between progress, which takes well-
typing to a step, and preservation, which takes a step back to well-typing—but
neither the technique nor the appealing terminology appears in Harper (2016).
The appeal to the Agda mailing list bore late fruit: Oleg Kiselyov directed us
to unpublished remarks on his web page where he uses the name eval for a
proof of progress and notes “the very proof of type soundness can be used to
evaluate sample expressions” (Kiselyov, 2009). Nonetheless, as of this writing,
we still have not located a mention in the published literature.

There are places in the literature where one might expect a remark on the
relation between progress and preservation and animation—but no such re-
mark appears. In the PoplMark Challenge (Aydemir et al., 2005), Challenge 2A
is to prove progress and preservation for System F<:, while Challenge 3 is to
prove animation for the same system. Nowhere do the authors indicate that
in an intuitionistic logic these are essentially the same problem. Owens et al.
(2016), when discussing extraction of animators for small-step semantics, men-
tion Redex and K, but no other possibilities. We hope the stress in PLFA on the
fact that in an intuitionistic setting progress and preservation imply animation
will mean that the connection becomes more widely known.

5. Intrinsic typing is golden

The second part of PLFA first discusses two different approaches to model-
ing simply-typed lambda calculus. It first presents terms with named variables
and extrinsic typing relation and then shifts to terms with de Bruijn indices
that are intrinsically typed. The names extrinsic and intrinsic for these two ap-
proaches are taken from Reynolds (2003). Before writing the text, Philip had
thought the two approaches complementary, with no clear winner. Now he is
convinced that the intrinsically-typed approach is superior.

Figure 6 presents the extrinsic approach. It first defines Id, Term, Type, and
Context, the abstract syntax of identifiers, raw terms, types, and contexts. It
then defines two judgments, Γ 3 x ⦂ A and Γ ` M ⦂ A, which hold when under
context Γ the variable x and the term M have type A, respectively.

Figure 7 presents the intrinsic approach. It first defines Type and Context,
the abstract syntax of types and contexts, of which the first is as before and the

16



Figure 6: Extrinsic approach in PLFA

17



Figure 7: Intrinsic approach in PLFA

second is as before with identifiers dropped. In place of the two judgments, the
types of variables and terms are indexed by a context and a type, so that Γ 3 A
and Γ ` A denote variables and terms, respectively, that under context Γ have
type A. The indexed types closely resemble the previous judgments: we now
represent a variable or a term by the proof that it is well typed. In particular,
the proof that a variable is well typed in the extrinsic approach corresponds to
a de Bruijn index in the intrinsic approach.

The extrinsic approach requires more lines of code than the intrinsic ap-
proach. The separate definition of raw terms is not needed in the intrinsic ap-
proach; and one judgment in the extrinsic approach needs to check that x 6≡ y,
while the corresponding judgment in the intrinsic approach does not. The dif-
ference becomes more pronounced when including the code for substitution,
reductions, and proofs of progress and preservation. In particular, where the

18



extrinsic approach requires one first define substitution and reduction and then
prove they preserve types, the intrinsic approach establishes substitution pre-
serves types at the same time it defines substitution and reduction.

Stripping out examples and any proofs that appear in one but not the other
(but could have appeared in both), the full development in PLFA for the ex-
trinsic approach takes 451 lines (216 lines of definitions and 235 lines for the
proofs) and the development for the intrinsic approach takes 275 lines (with
definitions and proofs interleaved). We have 451 / 235 = 1.64, close to the
golden ratio.

The intrinsic approach also has more expressive power. The extrinsic ap-
proach is restricted to substitution of one variable by a closed term, while the
intrinsic approach supports simultaneous substitution of all variables by open
terms, using a pleasing formulation due to McBride (2005), inspired by Goguen
and McKinna (1997) and Altenkirch and Reus (1999) and described in Allais
et al. (2017). In fact, we did manage to write a variant of the extrinsic approach
with simultaneous open substitution along the lines of McBride, but the result
was too complex for use in an introductory text, requiring 695 lines of code—
more than the total for the other two approaches combined.

The text develops both approaches because the extrinsic approach is more
familiar, and because placing the intrinsic approach first would lead to a steep
learning curve. By presenting the more long-winded but less powerful ap-
proach first, students can see for themselves the advantages of de Bruijn indices
and intrinsic types.

There are actually four possible designs, as the choice of named variables vs
de Bruijn indices, and the choice of extrinsic vs intrinsic typing may be made
independently. But the two designs we chose work well, while the other two
are problematic. Manipulation of de Bruijn indices can be notoriously error-
prone without intrinsic types to give assurance of correctness. For instrin-
sic typing with named variables, simultaneous substitution by open terms re-
mains difficult.

The benefits of the intrinsic approach are well known to some. The tech-
nique was introduced by Altenkirch and Reus (1999), and widely used else-
where, notably by Chapman (2009) and Allais et al. (2017). Philip is grateful to
David Darais for bringing it to his attention.

6. Teaching experience

Philip now has five years of experience teaching from SF and one year
teaching from PLFA. To date, he has taught three courses from PLFA.

• University of Edinburgh, September–December 2018 (with teaching as-
sistance from Wen and Chad Nester); twenty 2-hour slots, comprising
one hour of lecture followed by one hour of lab. Ten students completed
the course, fourth-year undergraduates and masters. The course covered
Parts I and II of PLFA, up through chapter Untyped.

19



• Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), March–
July 2019, hosted by Roberto Ieuramalischy; ten 3-hour slots, comprising
two hours of lecture followed by one hour of lab. Ten students completed
the course, mostly doctoral students. The course covered Parts I and II of
PLFA, up through chapter Untyped, save students read chapter Lists on
their own, and chapter Bisimilarity was skipped.

• University of Padova, June 2018, hosted by Maria Emilia Maietti; two 3-
hour slots, comprising two hours of lecture followed by one hour of lab.
Thirty undergraduate students sat the course, which covered chapters
Naturals, Induction, and Relations.

In addition, David Darais at University of Vermont and John Leo at Google
Seattle have taught from PLFA.

Exercises in PLFA are classified in three ways.

• Exercises labelled “(recommended)” are the ones students are required
to do in the classes taught at Edinburgh and PUC-Rio.

• Exercises labelled “(stretch)” are there to provide an extra challenge. Few
students do all of these, but most attempt at least a few.

• Exercises without a label are included for those who want extra practice.
To Philip’s surprise, students at PUC-Rio completed quite a few of these.

Students are expected to complete coursework for all of the required questions
in the text, optionally doing any stretch or unlabelled exercises. Coursework
also includes a “mock mock” exam, as described below.

The mark for the course is based on coursework and a final-exam, weighted
1/4 for coursework and 3/4 for the final exam. The weighting for coursework
is designed to be high enough to encourage students to do it (they all do), but
not so high as to encourage cheating. Students are encouraged to help each
other with coursework.

The final-exam is two hours online. Students have access to the Agda proof
assistant to check their work. At Edinburgh, students use computers with a
special exam operating system that disables access to the internet. Students
are given access to the text of PLFA, the Agda standard libraries, and the Agda
language reference manual, but no other materials.

Students must answer question 1 on the exam, and one of questions 2 or 3.
Question 1 gives predicates over a data structure, such lists or trees, to be for-
malised in Agda, and a theorem relating the predicates, to be formalised and
proved in Agda. Question 2 gives the students the intrinsic formulation of
lambda calculus from chapter DeBruijn, which they must extend with a de-
scribed language feature. Question 3 give the students the the bidirectional
type inferencer from chapter Inference, which they must extend with a de-
scribed language feature.

Because the course is taught using a proof assistant, it is important that
students have access to a proof assistant during the exam. Students are told

20



in advance that they are expected to get perfect on the exam, and that they
will have to study hard to achieve it. Given that the goal of formal methods
is to avoid error, we believe a pedagogical purpose is served by telling the
students that they are expected to achieve perfection and making it possible
for them to do so. Students are given two opportunities to practice in the run
up to the exam, a “mock” exam given in class under exam conditions (two
hours online), and before that a “mock mock” exam as coursework (in their
own time, encouraged to ask questions, tasked to do all three questions rather
than two of three).

For the courses run at Edinburgh and PUC-Rio, the scores vary widely on
the mock: minimum <20%, maximum 100%, mean 77.8, standard deviation
27.6. But all students achieve perfection on the exam. (The one exception was
a PUC-Rio student who did not attend classes or sit the mock.) Similar results
were achieved at Edinburgh over the previous five years, using SF as the course
textbook and Coq as the proof assistant. We consider these results a tribute to
the students’ ability to study and learn.

7. Software

The book is written using a combination of literate Agda and Markdown.
At the time of writing, the book is published using GitHub Pages and the
Jekyll static site generator. The book is open source—the source is currently
also hosted on GitHub, under a Creative Commons CC-BY license. The open-
source aspect is important—as the book is written in literate Agda, it is essen-
tial that anyone can download and execute the source.

We maintain a number of tools, which play various roles in rendering the
book in all its “glorious clickable HTML”. We render the literate Agda to high-
lighted HTML using Agda’s HTML backend. In addition to highlighting, this
inserts clickable links, linking each constructor and function to the site of its
definition. However, the links Agda inserts are local and don’t match the struc-
ture of the book. We maintain a script, highlight.sh, which fixes these links,
rerouting links to the standard library to the online version, and correcting
links to local modules.

(Before the release of Agda 2.6, Agda did not support highlighting embed-
ded literate code in HTML. We maintained agda2html, a tool which rewrites
the output of Agda’s HTML highlighter to highlight embedded code. The tool
had much more functionality, including the fixing of links as outlined above,
the stripping of implicit arguments to achieve a Haskell-like look, and the sup-
port for new Markdown constructs for linking to Agda names. However, Agda
2.6 has incorporated almost all of this functionality, and agda2html is now dep-
recated.)

The book is built, tested, and published after each commit, using Travis
CI, a web service for continuous integration. This means that the book is con-
stantly changing. To accommodate those who want a more stable version, e.g.,
for teaching, we maintain a stable version of the book at

21



http://plfa.inf.ed.ac.uk/stable

The stable version of the book is updated much less frequently, and updates
are announced.

We maintain a tool called, simply, acknowledgements, which uses the GitHub
API to automatically extract a list of contributors to the book, and add them to
the Acknowledgements page, each time the book is published. We consider
anyone who has sent a successful pull request a contributor, and sort contrib-
utors in the acknowledgments by the number of accepted requests. Arguably,
a different metric, such as total number of affected lines, might be more appro-
priate, though any solution will have its flaws.

8. Conclusion

One sign of a successful publication is that it will attract a few letters from
readers who have noticed typos or other problems. An unexpected benefit of
publishing on GitHub is that to date forty-one readers have sent a total of two
hundred seventy-five pull requests. Most of these fix typos, but a fair number
make more substantial improvements.

There is much left to do! We hope others may be inspired to join us to
expand and improve the book.

Acknowledgments. For inventing ideas on which PLFA is based, and for hand-
holding, many thanks to Conor McBride, James McKinna, Ulf Norell, and An-
dreas Abel. For showing how much more compact it is to use intrinsically-
typed terms, thanks to David Darais. For inspiring our work by writing SF,
thanks to Benjamin Pierce and his coauthors. For comments on a draft of this
paper, an extra thank you to James McKinna, Ulf Norell, Andreas Abel, and
Benjamin Pierce. This research was supported by EPSRC Programme Grant
EP/K034413/1.

References

References

Abadi, M., Cardelli, L., Curien, P.L., Levy, J.J., 1991. Explicit substitutions.
Journal of Functional Programming 1, 375–416.

Allais, G., Chapman, J., McBride, C., McKinna, J., 2017. Type-and-scope safe
programs and their proofs, in: Proceedings of the 6th ACM SIGPLAN Con-
ference on Certified Programs and Proofs, ACM. pp. 195–207.

Altenkirch, T., Reus, B., 1999. Monadic presentations of lambda terms using
generalized inductive types, in: International Workshop on Computer Sci-
ence Logic, Springer. pp. 453–468.

22



Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P.,
Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S., 2005. Mechanized
metatheory for the masses: the poplmark challenge, in: International Con-
ference on Theorem Proving in Higher Order Logics, Springer. pp. 50–65.

Barendregt, H., 1984. The Lambda Calculus. volume 103 of Studies in Logic.
Elsevier.

Barendregt, H., Coppo, M., Dezani-Ciancaglini, M., 1983. A filter lambda
model and the completeness of type assignment. Journal of Symbolic Logic
48, 931–940.

Berger, U., 1993. Program extraction from normalization proofs, in: Interna-
tional Conference on Typed Lambda Calculi and Applications, Springer. pp.
91–106.

Bove, A., Capretta, V., 2001. Nested general recursion and partiality in type
theory, in: International Conference on Theorem Proving in Higher Order
Logics, Springer. pp. 121–125.

Bove, A., Dybjer, P., Norell, U., 2009. A brief overview of agda–a functional
language with dependent types, in: International Conference on Theorem
Proving in Higher Order Logics, Springer. pp. 73–78.

Capretta, V., 2005. General recursion via coinductive types. Logical Methods
in Computer Science 1.

Chapman, J.M., 2009. Type checking and normalisation. Ph.D. thesis. Univer-
sity of Nottingham.

Dagand, P.É., Scherer, G., 2015. Normalization by realizability also evaluates,
in: Vingt-sixièmes Journées Francophones des Langages Applicatifs (JFLA
2015).

Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., Dougherty, D.J., 2017.
User studies of principled model finder output, in: International Conference
on Software Engineering and Formal Methods, Springer. pp. 168–184.

Engeler, E., 1981. Algebras and combinators. algebra universalis 13, 389–392.

Felleisen, M., Findler, R.B., Flatt, M., 2009. Semantics engineering with PLT
Redex. By Press.

Goguen, H., McKinna, J., 1997. Candidates for substitution. Technical Report.
Laboratory for Foundations of Computer Science, University of Edinburgh.

Gonthier, G., 2008. The four colour theorem: Engineering of a formal proof, in:
Computer mathematics. Springer, pp. 333–333.

23



Gonthier, G., Asperti, A., Avigad, J., et al., 2013. A machine-checked proof of
the odd order theorem, in: International Conference on Interactive Theorem
Proving, Springer. pp. 163–179.

Hales, T., Adams, M., Bauer, G., Dang, T.D., Harrison, J., Le Truong, H.,
Kaliszyk, C., Magron, V., McLaughlin, S., Nguyen, T.T., et al., 2017. A formal
proof of the Kepler conjecture, in: Forum of Mathematics, Pi, Cambridge
University Press.

Harper, R., 2016. Practical foundations for programming languages. Cam-
bridge University Press.

Huet, G., Kahn, G., Paulin-Mohring, C., 1997. The Coq proof assistant a tuto-
rial. Rapport Technique 178.

Kästner, D., Leroy, X., Blazy, S., Schommer, B., Schmidt, M., Ferdinand, C.,
2017. Closing the gap–the formally verified optimizing compiler compcert,
in: SSS’17: Safety-critical Systems Symposium 2017, CreateSpace. pp. 163–
180.

Kidney, D.O., 2019. Automatically and Efficiently Illustrating Polynomial
Equalities in Agda. URL: https://doisinkidney.com/pdfs/bsc-thesis.pdf.

Kiselyov, O., 2009. Formalizing languages, mechanizing type-soundess and
other meta-theoretic proofs. URL: http://okmij.org/ftp/formalizations/
index.html. unpublished manuscript.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al., 2009. sel4: Formal
verification of an os kernel, in: Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles, ACM. pp. 207–220.

Kokke, W., Swierstra, W., 2015. Auto in agda: Programming proof
search using reflection, in: Hinze, R., Voigtländer, J. (Eds.), Mathemat-
ics of Program Construction, Springer International Publishing. pp. 276–
301. URL: https://wenkokke.github.io/pubs/mpc2015.pdf, doi:10.1007/
978-3-319-19797-5_14.

Leroy, X., 2009. Formal verification of a realistic compiler. Communications of
the ACM 52, 107–115.

McBride, C., 2005. Type-preserving renaming and substitution. URL:
https://personal.cis.strath.ac.uk/conor.mcbride/ren-sub.pdf. unpublished
manuscript.

McBride, C., 2015. Turing-completeness totally free, in: International Confer-
ence on Mathematics of Program Construction, Springer. pp. 257–275.

O’Connor, L., Chen, Z., Rizkallah, C., Amani, S., Lim, J., Murray, T., Na-
gashima, Y., Sewell, T., Klein, G., 2016. Refinement through restraint: Bring-
ing down the cost of verification, in: ICFP, pp. 89–102.

24



Owens, S., Myreen, M.O., Kumar, R., Tan, Y.K., 2016. Functional big-step se-
mantics, in: European Symposium on Programming, Springer. pp. 589–615.

Pfenning, F., 1992. A Proof of the Church-Rosser Theorem and Its Represen-
tation in a Logical Framework. Technical Report CMU-CS-92-186. Carnegie
Mellon University. Pittsburgh, PA, USA.

Pierce, B.C., 2002. Types and programming languages. MIT press.

Pierce, B.C., 2009. Lambda, The Ultimate TA, in: ICFP, pp. 121–22.

Pierce, B.C., Casinghino, C., Gaboardi, M., Greenberg, M., Hriţcu, C., Sjöberg,
V., Yorgey, B., 2010. Software foundations. URL: http://www.cis.upenn.
edu/bcpierce/sf/current/index.html.

Plotkin, G.D., 1977. Lcf considered as a programming language. Theoretical
Computer Science 5, 223–255.

Plotkin, G.D., 1993. Set-theoretical and other elementary models of the ń-
calculus. Theoretical Computer Science 121, 351 – 409.

Reynolds, J.C., 2003. What do types mean?–from intrinsic to extrinsic seman-
tics, in: Programming methodology. Springer, pp. 309–327.

Roşu, G., Şerbănuţă, T.F., 2010. An overview of the K semantic framework.
Journal of Logic and Algebraic Programming 79, 397–434.

Schäfer, S., Tebbi, T., Smolka, G., 2015. Autosubst: Reasoning with de bruijn
terms and parallel substitutions, in: Interactive Theorem Proving - 6th Inter-
national Conference, Springer. pp. 359–374.

Scott, D., 1976. Data types as lattices. SIAM Journal on Computing 5, 522–587.

Stump, A., 2016. Verified functional programming in Agda. Morgan & Clay-
pool.

Wadler, P., 2018. Programming language foundations in agda, in: Formal Meth-
ods: Foundations and Applications (SBMF 2018), Springer.

Wright, A.K., Felleisen, M., 1994. A syntactic approach to type soundness.
Information and computation 115, 38–94.

25


