
RISC-V Supervisor Binary Interface
Specification

RISC-V Platform Runtime Services Task Group

Version v2.0, 2024-01-31: This document is Ratified. No changes are allowed. Any desired or needed
changes can be the subject of a follow-on new extension. Ratified extensions are never revised. Visit

http://riscv.org/spec-state for further details.

Table of Contents
Preamble. 1

Copyright and license information. 2

Contributors. 3

Change Log . 4

Version 2.0 . 4

Version 2.0-rc8 . 4

Version 2.0-rc7 . 4

Version 2.0-rc6 . 4

Version 2.0-rc5 . 4

Version 2.0-rc4 . 4

Version 2.0-rc3 . 4

Version 2.0-rc2 . 5

Version 2.0-rc1 . 5

Version 1.0.0 . 5

Version 1.0-rc3 . 5

Version 1.0-rc2 . 5

Version 1.0-rc1 . 6

Version 0.3.0 . 6

Version 0.3-rc1 . 6

Version 0.2 . 6

1. Introduction. 7

2. Terms and Abbreviations . 9

3. Binary Encoding . 10

3.1. Hart list parameter. 11

3.2. Shared memory physical address range parameter . 11

4. Base Extension (EID #0x10) . 13

4.1. Function: Get SBI specification version (FID #0). 13

4.2. Function: Get SBI implementation ID (FID #1) . 13

4.3. Function: Get SBI implementation version (FID #2) . 13

4.4. Function: Probe SBI extension (FID #3). 13

4.5. Function: Get machine vendor ID (FID #4). 13

4.6. Function: Get machine architecture ID (FID #5) . 14

4.7. Function: Get machine implementation ID (FID #6) . 14

4.8. Function Listing . 14

4.9. SBI Implementation IDs . 14

5. Legacy Extensions (EIDs #0x00 - #0x0F) . 16

5.1. Extension: Set Timer (EID #0x00) . 16

5.2. Extension: Console Putchar (EID #0x01) . 16

5.3. Extension: Console Getchar (EID #0x02) . 17

5.4. Extension: Clear IPI (EID #0x03) . 17

5.5. Extension: Send IPI (EID #0x04) . 17

5.6. Extension: Remote FENCE.I (EID #0x05) . 17

5.7. Extension: Remote SFENCE.VMA (EID #0x06) . 17

5.8. Extension: Remote SFENCE.VMA with ASID (EID #0x07) . 18

5.9. Extension: System Shutdown (EID #0x08) . 18

5.10. Function Listing . 18

6. Timer Extension (EID #0x54494D45 "TIME"). 20

6.1. Function: Set Timer (FID #0) . 20

6.2. Function Listing . 20

7. IPI Extension (EID #0x735049 "sPI: s-mode IPI") . 21

7.1. Function: Send IPI (FID #0). 21

7.2. Function Listing . 21

8. RFENCE Extension (EID #0x52464E43 "RFNC") . 22

8.1. Function: Remote FENCE.I (FID #0) . 22

8.2. Function: Remote SFENCE.VMA (FID #1) . 22

8.3. Function: Remote SFENCE.VMA with ASID (FID #2) . 23

8.4. Function: Remote HFENCE.GVMA with VMID (FID #3) . 23

8.5. Function: Remote HFENCE.GVMA (FID #4) . 24

8.6. Function: Remote HFENCE.VVMA with ASID (FID #5). 24

8.7. Function: Remote HFENCE.VVMA (FID #6) . 25

8.8. Function Listing . 25

9. Hart State Management Extension (EID #0x48534D "HSM") . 26

9.1. Function: Hart start (FID #0) . 27

9.2. Function: Hart stop (FID #1). 29

9.3. Function: Hart get status (FID #2). 29

9.4. Function: Hart suspend (FID #3) . 30

9.5. Function Listing . 31

10. System Reset Extension (EID #0x53525354 "SRST") . 32

10.1. Function: System reset (FID #0) . 32

10.2. Function Listing . 33

11. Performance Monitoring Unit Extension (EID #0x504D55 "PMU") . 34

11.1. Event: Hardware general events (Type #0) . 34

11.2. Event: Hardware cache events (Type #1) . 35

11.3. Event: Hardware raw events (Type #2). 36

11.4. Event: Firmware events (Type #15) . 37

11.5. Function: Get number of counters (FID #0) . 38

11.6. Function: Get details of a counter (FID #1). 38

11.7. Function: Find and configure a matching counter (FID #2). 39

11.8. Function: Start a set of counters (FID #3) . 41

11.9. Function: Stop a set of counters (FID #4) . 42

11.10. Function: Read a firmware counter (FID #5). 43

11.11. Function: Read a firmware counter high bits (FID #6) . 43

11.12. Function: Set PMU snapshot shared memory (FID #7) . 43

11.13. Function Listing . 45

12. Debug Console Extension (EID #0x4442434E "DBCN") . 46

12.1. Function: Console Write (FID #0) . 46

12.2. Function: Console Read (FID #1) . 47

12.3. Function: Console Write Byte (FID #2) . 47

12.4. Function Listing . 48

13. System Suspend Extension (EID #0x53555350 "SUSP") . 49

13.1. Function: System Suspend (FID #0) . 49

13.2. Function Listing . 51

14. CPPC Extension (EID #0x43505043 "CPPC") . 52

14.1. Function: Probe CPPC register (FID #0). 53

14.2. Function: Read CPPC register (FID #1). 54

14.3. Function: Read CPPC register high bits (FID #2) . 54

14.4. Function: Write to CPPC register (FID #3) . 55

14.5. Function Listing . 55

15. Nested Acceleration Extension (EID #0x4E41434C "NACL"). 56

15.1. Feature: Synchronize CSR (ID #0) . 57

15.2. Feature: Synchronize HFENCE (ID #1). 58

15.3. Feature: Synchronize SRET (ID #2). 60

15.4. Feature: Autoswap CSR (ID #3) . 62

15.5. Function: Probe nested acceleration feature (FID #0) . 63

15.6. Function: Set nested acceleration shared memory (FID #1) . 63

15.7. Function: Synchronize shared memory CSRs (FID #2) . 64

15.8. Function: Synchronize shared memory HFENCEs (FID #3) . 64

15.9. Function: Synchronize shared memory and emulate SRET (FID #4). 65

15.10. Function Listing . 65

16. Steal-time Accounting Extension (EID #0x535441 "STA") . 67

16.1. Function: Set Steal-time Shared Memory Address (FID #0) . 67

16.2. Function Listing . 69

17. Experimental SBI Extension Space (EIDs #0x08000000 - #0x08FFFFFF) . 70

18. Vendor Specific Extension Space (EIDs #0x09000000 - #0x09FFFFFF) . 71

19. Firmware Specific Extension Space (EIDs #0x0A000000 - #0x0AFFFFFF) . 72

References . 73

Preamble

This document is in the Ratified state

No changes are allowed. Any desired or needed changes can be the subject of a
follow-on new extension. Ratified extensions are never revised

1

http://riscv.org/spec-state

Copyright and license information
This RISC-V SBI specification is © 2022 RISC-V International.

It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full
license text is available at creativecommons.org/licenses/by/4.0/.

2

https://creativecommons.org/licenses/by/4.0/

Contributors
This RISC-V specification has been contributed to directly or indirectly by:

Abner Chang <abner.chang@hpe.com>
Al Stone <ahs3@ahs3.net>
Andrew Jones <ajones@ventanamicro.com>
Anup Patel <apatel@ventanamicro.com>
Atish Patra <atishp04@gmail.com>
Atish Patra <atishp@rivosinc.com>
Bin Meng <bmeng.cn@gmail.com>
Chris Williams <diodesign@tuta.io>
Conor Dooley <conor.dooley@microchip.com>
Daniel Schaefer <git@danielschaefer.me>
Esteban Blanc <estblcsk@gmail.com>
hasheddan <georgedanielmangum@gmail.com>
Heinrich Schuchardt <xypron.glpk@gmx.de>
Jeff Scheel <jeff@riscv.org>
Jessica Clarke <jrtc27@jrtc27.com>
john <799433746@qq.com>
Konrad Schwarz <konrad.schwarz@siemens.com>
Luo Jia / Zhouqi Jiang <luojia@hust.edu.cn>
Nick Kossifidis <mickflemm@gmail.com>
Palmer Dabbelt <palmer@dabbelt.com>
Paolo Bonzini <pbonzini@redhat.com>
Sean Anderson <seanga2@gmail.com>
Stefano Stabellini <stefano.stabellini@amd.com>
Sunil V L <sunilvl@ventanamicro.com>
Tsukasa OI <research_trasio@irq.a4lg.com>
Yiting Wang <yiting.wang@windriver.com>

3

mailto:abner.chang@hpe.com
mailto:ahs3@ahs3.net
mailto:ajones@ventanamicro.com
mailto:apatel@ventanamicro.com
mailto:atishp04@gmail.com
mailto:atishp@rivosinc.com
mailto:bmeng.cn@gmail.com
mailto:diodesign@tuta.io
mailto:conor.dooley@microchip.com
mailto:git@danielschaefer.me
mailto:estblcsk@gmail.com
mailto:georgedanielmangum@gmail.com
mailto:xypron.glpk@gmx.de
mailto:jeff@riscv.org
mailto:jrtc27@jrtc27.com
mailto:799433746@qq.com
mailto:konrad.schwarz@siemens.com
mailto:luojia@hust.edu.cn
mailto:mickflemm@gmail.com
mailto:palmer@dabbelt.com
mailto:pbonzini@redhat.com
mailto:seanga2@gmail.com
mailto:stefano.stabellini@amd.com
mailto:sunilvl@ventanamicro.com
mailto:research_trasio@irq.a4lg.com
mailto:yiting.wang@windriver.com

Change Log

Version 2.0
• Clarification around SBI PMU set memory function

• Base extension function name typo fix

• Upate the document state to Ratified

Version 2.0-rc8
• Clarfications STA extension and counter index in the pmu snapshot.

Version 2.0-rc7
• Few clarfications around system suspend and pmu snapshot.

Version 2.0-rc6
• Few clarifications around rfence extensions

• Marks public review period complete.

Version 2.0-rc5
• Update the document state to Frozen

Version 2.0-rc4
• Added flags parameter to sbi_pmu_snapshot_set_shmem()

• Return error code SBI_ERR_NO_SHMEM in SBI PMU extension wherever applicable

• Made flags parameter of sbi_steal_time_set_shmem() as unsigned long

• Split the specification into multiple adoc files

• Add more clarification for firmware/vendor/experimental extension space.

• Fix ambiguous usage of normative statements.

Version 2.0-rc3
• CI support added

• Fix revmark in the makefile.

• Few minor cleanups.

4

Version 2.0-rc2
• Added clarification for SUSP, NACL & STA extensions.

• Standardization of hart usage.

• Added an error code in SBI DBCN extension.

Version 2.0-rc1
• Added common description for shared memory physical address range parameter

• Added SBI debug console extension

• Relaxed the counter width requirement on SBI PMU firmware counters

• Added sbi_pmu_counter_fw_read_hi() in SBI PMU extension

• Reserved space for SBI implementation specific firmware events

• Added SBI system suspend extension

• Added SBI CPPC extension

• Clarified that an SBI extension can be partially implemented only if it defines a mechanism to
discover implemented SBI functions

• Added error code SBI_ERR_NO_SHMEM

• Added SBI nested acceleration extension

• Added common description for a virtual hart

• Added SBI steal-time accounting extension

• Added SBI PMU snapshot extension

Version 1.0.0
• Updated the version for ratification

Version 1.0-rc3
• Updated the calling convention

• Fixed a typo in PMU extension

• Added a abbreviation table

Version 1.0-rc2
• Update to RISC-V formatting

• Improved the introduction

• Removed all references to RV32

5

Version 1.0-rc1
• A typo fix

Version 0.3.0
• Few typo fixes

• Updated the LICENSE with detailed text instead of a hyperlink

Version 0.3-rc1
• Improved document styling and naming conventions

• Added SBI system reset extension

• Improved SBI introduction section

• Improved documentation of SBI hart state management extension

• Added suspend function to SBI hart state management extension

• Added performance monitoring unit extension

• Clarified that an SBI extension shall not be partially implemented

Version 0.2
• The entire v0.1 SBI has been moved to the legacy extension, which is now an optional extension.

This is technically a backwards-incompatible change because the legacy extension is optional
and v0.1 of the SBI doesn’t allow probing, but it’s as good as we can do.

6

Chapter 1. Introduction
This specification describes the RISC-V Supervisor Binary Interface, known from here on as SBI.
The SBI allows supervisor-mode (S-mode or VS-mode) software to be portable across all RISC-V
implementations by defining an abstraction for platform (or hypervisor) specific functionality. The
design of the SBI follows the general RISC-V philosophy of having a small core along with a set of
optional modular extensions.

An SBI extension defines a set of SBI functions which provides a particular functionality to
supervisor-mode software. SBI extensions as a whole are optional and cannot be partially
implemented unless an SBI extension defines a mechanism to discover implemented SBI functions.
If sbi_probe_extension() signals that an extension is available, all functions present in the SBI
version reported by sbi_get_spec_version() must conform to that version of the SBI specification.

The higher privilege software providing SBI interface to the supervisor-mode software is referred
as an SBI implementation or Supervisor Execution Environment (SEE). An SBI implementation (or
SEE) can be platform runtime firmware executing in machine-mode (M-mode) (see below Figure 1)
or it can be some hypervisor executing in hypervisor-mode (HS-mode) (see below Figure 2).

Figure 1. RISC-V System without H-extension

Figure 2. RISC-V System with H-extension

7

Harts are provisioned by the SBI implementation for supervisor-mode software. Hence, from the
perspective of the SBI implementation, the S-mode hart contexts are referred to as virtual harts. In
the case that the implementation is a hypervisor, virtual harts represent the VS-mode guest
contexts.

The SBI specification doesn’t specify any method for hardware discovery. The supervisor software
must rely on the other industry standard hardware discovery methods (i.e. Device Tree or ACPI) for
that.

8

Chapter 2. Terms and Abbreviations
This specification uses the following terms and abbreviations:

Term Meaning

ACPI Advanced Configuration and Power
Interface

ASID Address Space Identifier

BMC Baseboard Management Controller

CPPC Collaborative Processor Performance
Control

EID Extension ID

FID Function ID

HSM Hart State Management

IPI Inter Processor Interrupt

PMU Performance Monitoring Unit

SBI Supervisor Binary Interface

SEE Supervisor Execution Environment

VMID Virtual Machine Identifier

9

Chapter 3. Binary Encoding
All SBI functions share a single binary encoding, which facilitates the mixing of SBI extensions. The
SBI specification follows the below calling convention.

• An ECALL is used as the control transfer instruction between the supervisor and the SEE.

• a7 encodes the SBI extension ID (EID),

• a6 encodes the SBI function ID (FID) for a given extension ID encoded in a7 for any SBI
extension defined in or after SBI v0.2.

• All registers except a0 & a1 must be preserved across an SBI call by the callee.

• SBI functions must return a pair of values in a0 and a1, with a0 returning an error code. This is
analogous to returning the C structure

 struct sbiret {
 long error;
 long value;
 };

In the name of compatibility, SBI extension IDs (EIDs) and SBI function IDs (FIDs) are encoded as
signed 32-bit integers. When passed in registers these follow the standard above calling convention
rules.

The Table 1 below provides a list of Standard SBI error codes.

Table 1. Standard SBI Errors

Error Type Value Description

SBI_SUCCESS 0 Completed successfully

SBI_ERR_FAILED -1 Failed

SBI_ERR_NOT_SUPPORTED -2 Not supported

SBI_ERR_INVALID_PARAM -3 Invalid parameter(s)

SBI_ERR_DENIED -4 Denied or not allowed

SBI_ERR_INVALID_ADDRESS -5 Invalid address(s)

SBI_ERR_ALREADY_AVAILABLE -6 Already available

SBI_ERR_ALREADY_STARTED -7 Already started

SBI_ERR_ALREADY_STOPPED -8 Already stopped

SBI_ERR_NO_SHMEM -9 Shared memory not available

An ECALL with an unsupported SBI extension ID (EID) or an unsupported SBI function ID (FID) must
return the error code SBI_ERR_NOT_SUPPORTED.

Every SBI function should prefer unsigned long as the data type. It keeps the specification simple
and easily adaptable for all RISC-V ISA types. In case the data is defined as 32bit wide, higher

10

privilege software must ensure that it only uses 32 bit data.

3.1. Hart list parameter
If an SBI function caller needs to pass a list of harts to the higher privilege mode, it must use a hart
mask as defined below. This is applicable to any extensions defined in or after v0.2.

Any SBI function, requiring a hart mask, must take the following two arguments:

• unsigned long hart_mask is a scalar bit-vector containing hartids

• unsigned long hart_mask_base is the starting hartid from which the bit-vector must be computed.

In a single SBI function call, the maximum number of harts that can be set is always XLEN. If a
lower privilege mode needs to pass information about more than XLEN harts, it must invoke the
SBI function multiple times. hart_mask_base can be set to -1 to indicate that hart_mask shall be
ignored and all available harts must be considered.

Any SBI function taking hart mask arguments may return the error values listed in the Table 2
below which are in addition to function specific error values.

Table 2. Hart Mask Errors

Error code Description

SBI_ERR_INVALID_PARAM Either hart_mask_base, or at least one hartid from
hart_mask, is not valid, i.e. either the hartid is not enabled
by the platform or is not available to the supervisor.

3.2. Shared memory physical address range parameter
If an SBI function needs to pass a shared memory physical address range to the SBI implementation
(or higher privilege mode), then this physical memory address range MUST satisfy the following
requirements:

• The SBI implementation MUST check that the supervisor-mode software is allowed to access
the specified physical memory range with the access type requested (read and/or write).

• The SBI implementation MUST access the specified physical memory range using the PMA
attributes.

If the supervisor-mode software accesses the same physical memory range using a
memory type different than the PMA, then a loss of coherence or unexpected
memory ordering may occur. The invoking software should follow the rules and
sequences defined in the RISC-V Svpbmt specification to prevent the loss of
coherence and memory ordering.

• The data in the shared memory MUST follow little-endian byte ordering.

It is recommended that a memory physical address passed to an SBI function should use at least
two unsigned long parameters to support platforms which have memory physical addresses wider

11

than XLEN bits.

12

Chapter 4. Base Extension (EID #0x10)
The base extension is designed to be as small as possible. As such, it only contains functionality for
probing which SBI extensions are available and for querying the version of the SBI. All functions in
the base extension must be supported by all SBI implementations, so there are no error returns
defined.

4.1. Function: Get SBI specification version (FID #0)

struct sbiret sbi_get_spec_version(void);

Returns the current SBI specification version. This function must always succeed. The minor
number of the SBI specification is encoded in the low 24 bits, with the major number encoded in
the next 7 bits. Bit 31 must be 0 and is reserved for future expansion.

4.2. Function: Get SBI implementation ID (FID #1)

struct sbiret sbi_get_impl_id(void);

Returns the current SBI implementation ID, which is different for every SBI implementation. It is
intended that this implementation ID allows software to probe for SBI implementation quirks.

4.3. Function: Get SBI implementation version (FID #2)

struct sbiret sbi_get_impl_version(void);

Returns the current SBI implementation version. The encoding of this version number is specific to
the SBI implementation.

4.4. Function: Probe SBI extension (FID #3)

struct sbiret sbi_probe_extension(long extension_id);

Returns 0 if the given SBI extension ID (EID) is not available, or 1 if it is available unless defined as
any other non-zero value by the implementation.

4.5. Function: Get machine vendor ID (FID #4)

struct sbiret sbi_get_mvendorid(void);

13

Return a value that is legal for the mvendorid CSR and 0 is always a legal value for this CSR.

4.6. Function: Get machine architecture ID (FID #5)

struct sbiret sbi_get_marchid(void);

Return a value that is legal for the marchid CSR and 0 is always a legal value for this CSR.

4.7. Function: Get machine implementation ID (FID #6)

struct sbiret sbi_get_mimpid(void);

Return a value that is legal for the mimpid CSR and 0 is always a legal value for this CSR.

4.8. Function Listing
Table 3. Base Function List

Function Name SBI Version FID EID

sbi_get_spec_version 0.2 0 0x10

sbi_get_impl_id 0.2 1 0x10

sbi_get_impl_version 0.2 2 0x10

sbi_probe_extension 0.2 3 0x10

sbi_get_mvendorid 0.2 4 0x10

sbi_get_marchid 0.2 5 0x10

sbi_get_mimpid 0.2 6 0x10

4.9. SBI Implementation IDs
Table 4. SBI Implementation IDs

Implementation ID Name

0 Berkeley Boot Loader (BBL)

1 OpenSBI

2 Xvisor

3 KVM

4 RustSBI

5 Diosix

6 Coffer

14

Implementation ID Name

7 Xen Project

8 PolarFire Hart Software Services

15

Chapter 5. Legacy Extensions (EIDs #0x00 -
#0x0F)
The legacy SBI extensions follow a slightly different calling convention as compared to the SBI v0.2
(or higher) specification where:

• The SBI function ID field in a6 register is ignored because these are encoded as multiple SBI
extension IDs.

• Nothing is returned in a1 register.

• All registers except a0 must be preserved across an SBI call by the callee.

• The value returned in a0 register is SBI legacy extension specific.

The page and access faults taken by the SBI implementation while accessing memory on behalf of
the supervisor are redirected back to the supervisor with sepc CSR pointing to the faulting ECALL
instruction.

The legacy SBI extensions is deprecated in favor of the other extensions listed below.

5.1. Extension: Set Timer (EID #0x00)

long sbi_set_timer(uint64_t stime_value)

Programs the clock for next event after stime_value time. This function also clears the pending
timer interrupt bit.

If the supervisor wishes to clear the timer interrupt without scheduling the next timer event, it can
either request a timer interrupt infinitely far into the future (i.e., (uint64_t)-1), or it can instead
mask the timer interrupt by clearing sie.STIE CSR bit.

This SBI call returns 0 upon success or an implementation specific negative error code.

5.2. Extension: Console Putchar (EID #0x01)

long sbi_console_putchar(int ch)

Write data present in ch to debug console.

Unlike sbi_console_getchar(), this SBI call will block if there remain any pending characters to be
transmitted or if the receiving terminal is not yet ready to receive the byte. However, if the console
doesn’t exist at all, then the character is thrown away.

This SBI call returns 0 upon success or an implementation specific negative error code.

16

5.3. Extension: Console Getchar (EID #0x02)

long sbi_console_getchar(void)

Read a byte from debug console.

The SBI call returns the byte on success, or -1 for failure.

5.4. Extension: Clear IPI (EID #0x03)

long sbi_clear_ipi(void)

Clears the pending IPIs if any. The IPI is cleared only in the hart for which this SBI call is invoked.
sbi_clear_ipi() is deprecated because S-mode code can clear sip.SSIP CSR bit directly.

This SBI call returns 0 if no IPI had been pending, or an implementation specific positive value if an
IPI had been pending.

5.5. Extension: Send IPI (EID #0x04)

long sbi_send_ipi(const unsigned long *hart_mask)

Send an inter-processor interrupt to all the harts defined in hart_mask. Interprocessor interrupts
manifest at the receiving harts as Supervisor Software Interrupts.

hart_mask is a virtual address that points to a bit-vector of harts. The bit vector is represented as a
sequence of unsigned longs whose length equals the number of harts in the system divided by the
number of bits in an unsigned long, rounded up to the next integer.

This SBI call returns 0 upon success or an implementation specific negative error code.

5.6. Extension: Remote FENCE.I (EID #0x05)

long sbi_remote_fence_i(const unsigned long *hart_mask)

Instructs remote harts to execute FENCE.I instruction. The hart_mask is same as described in
sbi_send_ipi().

This SBI call returns 0 upon success or an implementation specific negative error code.

5.7. Extension: Remote SFENCE.VMA (EID #0x06)

17

long sbi_remote_sfence_vma(const unsigned long *hart_mask,
 unsigned long start,
 unsigned long size)

Instructs the remote harts to execute one or more SFENCE.VMA instructions, covering the range of
virtual addresses between start and start + size.

The remote fence operation applies to the entire address space if either:

• start and size are both 0, or

• size is equal to 2^XLEN-1.

This SBI call returns 0 upon success or an implementation specific negative error code.

5.8. Extension: Remote SFENCE.VMA with ASID (EID
#0x07)

long sbi_remote_sfence_vma_asid(const unsigned long *hart_mask,
 unsigned long start,
 unsigned long size,
 unsigned long asid)

Instruct the remote harts to execute one or more SFENCE.VMA instructions, covering the range of
virtual addresses between start and start + size. This covers only the given ASID.

The remote fence operation applies to the entire address space if either:

• start and size are both 0, or

• size is equal to 2^XLEN-1.

This SBI call returns 0 upon success or an implementation specific negative error code.

5.9. Extension: System Shutdown (EID #0x08)

void sbi_shutdown(void)

Puts all the harts to shutdown state from supervisor point of view.

This SBI call doesn’t return irrespective whether it succeeds or fails.

5.10. Function Listing
Table 5. Legacy Function List

18

Function Name SBI Version FID EID Replacement EID

sbi_set_timer 0.1 0 0x00 0x54494D45

sbi_console_putchar 0.1 0 0x01 0x4442434E

sbi_console_getchar 0.1 0 0x02 0x4442434E

sbi_clear_ipi 0.1 0 0x03 N/A

sbi_send_ipi 0.1 0 0x04 0x735049

sbi_remote_fence_i 0.1 0 0x05 0x52464E43

sbi_remote_sfence_vma 0.1 0 0x06 0x52464E43

sbi_remote_sfence_vma_asid 0.1 0 0x07 0x52464E43

sbi_shutdown 0.1 0 0x08 0x53525354

RESERVED 0x09-0x0F

19

Chapter 6. Timer Extension (EID
#0x54494D45 "TIME")
This replaces legacy timer extension (EID #0x00). It follows the new calling convention defined in
v0.2.

6.1. Function: Set Timer (FID #0)

struct sbiret sbi_set_timer(uint64_t stime_value)

Programs the clock for next event after stime_value time. stime_value is in absolute time. This
function must clear the pending timer interrupt bit as well.

If the supervisor wishes to clear the timer interrupt without scheduling the next timer event, it can
either request a timer interrupt infinitely far into the future (i.e., (uint64_t)-1), or it can instead
mask the timer interrupt by clearing sie.STIE CSR bit.

6.2. Function Listing
Table 6. TIME Function List

Function Name SBI Version FID EID

sbi_set_timer 0.2 0 0x54494D45

20

Chapter 7. IPI Extension (EID #0x735049 "sPI:
s-mode IPI")
This extension replaces the legacy extension (EID #0x04). The other IPI related legacy
extension(0x3) is deprecated now. All the functions in this extension follow the hart_mask as defined
in the binary encoding section.

7.1. Function: Send IPI (FID #0)

struct sbiret sbi_send_ipi(unsigned long hart_mask,
 unsigned long hart_mask_base)

Send an inter-processor interrupt to all the harts defined in hart_mask. Interprocessor interrupts
manifest at the receiving harts as the supervisor software interrupts.

The possible error codes returned in sbiret.error are shown in the Table 7 below.

Table 7. IPI Send Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

7.2. Function Listing
Table 8. IPI Function List

Function Name SBI Version FID EID

sbi_send_ipi 0.2 0 0x735049

21

Chapter 8. RFENCE Extension (EID
#0x52464E43 "RFNC")
This extension defines all remote fence related functions and replaces the legacy extensions (EIDs
#0x05 - #0x07). All the functions follow the hart_mask as defined in binary encoding section. Any
function which accepts a range of addresses (i.e. start_addr and size) must abide by the below
constraints on range parameters.

The remote fence operation applies to the entire address space if either:

• start_addr and size are both 0, or

• size is equal to 2^XLEN-1.

8.1. Function: Remote FENCE.I (FID #0)

struct sbiret sbi_remote_fence_i(unsigned long hart_mask,
 unsigned long hart_mask_base)

Instructs remote harts to execute FENCE.I instruction.

The possible error codes returned in sbiret.error are shown in the Table 9 below.

Table 9. RFENCE Remote FENCE.I Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

8.2. Function: Remote SFENCE.VMA (FID #1)

struct sbiret sbi_remote_sfence_vma(unsigned long hart_mask,
 unsigned long hart_mask_base,
 unsigned long start_addr,
 unsigned long size)

Instructs the remote harts to execute one or more SFENCE.VMA instructions, covering the range of
virtual addresses between start_addr and start_addr + size.

The possible error codes returned in sbiret.error are shown in the Table 10 below.

Table 10. RFENCE Remote SFENCE.VMA Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI_ERR_INVALID_ADDRESS start_addr or size is not valid.

22

8.3. Function: Remote SFENCE.VMA with ASID (FID #2)

struct sbiret sbi_remote_sfence_vma_asid(unsigned long hart_mask,
 unsigned long hart_mask_base,
 unsigned long start_addr,
 unsigned long size,
 unsigned long asid)

Instruct the remote harts to execute one or more SFENCE.VMA instructions, covering the range of
virtual addresses between start_addr and start_addr + size. This covers only the given ASID.

The possible error codes returned in sbiret.error are shown in the Table 11 below.

Table 11. RFENCE Remote SFENCE.VMA with ASID Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI_ERR_INVALID_ADDRESS start_addr or size is not valid.

8.4. Function: Remote HFENCE.GVMA with VMID (FID
#3)

struct sbiret sbi_remote_hfence_gvma_vmid(unsigned long hart_mask,
 unsigned long hart_mask_base,
 unsigned long start_addr,
 unsigned long size,
 unsigned long vmid)

Instruct the remote harts to execute one or more HFENCE.GVMA instructions, covering the range of
guest physical addresses between start_addr and start_addr + size only for the given VMID. This
function call is only valid for harts implementing hypervisor extension.

The possible error codes returned in sbiret.error are shown in the Table 12 below.

Table 12. RFENCE Remote HFENCE.GVMA with VMID Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI_ERR_NOT_SUPPORTED This function is not supported as it is not
implemented or one of the target hart doesn’t
support hypervisor extension.

SBI_ERR_INVALID_ADDRESS start_addr or size is not valid.

23

8.5. Function: Remote HFENCE.GVMA (FID #4)

struct sbiret sbi_remote_hfence_gvma(unsigned long hart_mask,
 unsigned long hart_mask_base,
 unsigned long start_addr,
 unsigned long size)

Instruct the remote harts to execute one or more HFENCE.GVMA instructions, covering the range of
guest physical addresses between start_addr and start_addr + size for all the guests. This function
call is only valid for harts implementing hypervisor extension.

The possible error codes returned in sbiret.error are shown in the Table 13 below.

Table 13. RFENCE Remote HFENCE.GVMA Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI_ERR_NOT_SUPPORTED This function is not supported as it is not
implemented or one of the target hart doesn’t
support hypervisor extension.

SBI_ERR_INVALID_ADDRESS start_addr or size is not valid.

8.6. Function: Remote HFENCE.VVMA with ASID (FID
#5)

struct sbiret sbi_remote_hfence_vvma_asid(unsigned long hart_mask,
 unsigned long hart_mask_base,
 unsigned long start_addr,
 unsigned long size,
 unsigned long asid)

Instruct the remote harts to execute one or more HFENCE.VVMA instructions, covering the range of
guest virtual addresses between start_addr and start_addr + size for the given ASID and current
VMID (in hgatp CSR) of calling hart. This function call is only valid for harts implementing hypervisor
extension.

The possible error codes returned in sbiret.error are shown in the Table 14 below.

Table 14. RFENCE Remote HFENCE.VVMA with ASID Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI_ERR_NOT_SUPPORTED This function is not supported as it is not
implemented or one of the target hart doesn’t
support hypervisor extension.

24

Error code Description

SBI_ERR_INVALID_ADDRESS start_addr or size is not valid.

8.7. Function: Remote HFENCE.VVMA (FID #6)

struct sbiret sbi_remote_hfence_vvma(unsigned long hart_mask,
 unsigned long hart_mask_base,
 unsigned long start_addr,
 unsigned long size)

Instruct the remote harts to execute one or more HFENCE.VVMA instructions, covering the range of
guest virtual addresses between start_addr and start_addr + size for current VMID (in hgatp CSR) of
calling hart. This function call is only valid for harts implementing hypervisor extension.

The possible error codes returned in sbiret.error are shown in the Table 15 below.

Table 15. RFENCE Remote HFENCE.VVMA Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI_ERR_NOT_SUPPORTED This function is not supported as it is not
implemented or one of the target hart doesn’t
support hypervisor extension.

SBI_ERR_INVALID_ADDRESS start_addr or size is not valid.

8.8. Function Listing
Table 16. RFENCE Function List

Function Name SBI Version FID EID

sbi_remote_fence_i 0.2 0 0x52464E43

sbi_remote_sfence_vma 0.2 1 0x52464E43

sbi_remote_sfence_vma_asid 0.2 2 0x52464E43

sbi_remote_hfence_gvma_vmid 0.2 3 0x52464E43

sbi_remote_hfence_gvma 0.2 4 0x52464E43

sbi_remote_hfence_vvma_asid 0.2 5 0x52464E43

sbi_remote_hfence_vvma 0.2 6 0x52464E43

25

Chapter 9. Hart State Management
Extension (EID #0x48534D "HSM")
The Hart State Management (HSM) Extension introduces a set of hart states and a set of functions
which allow the supervisor-mode software to request a hart state change.

The Table 17 shown below describes all possible HSM states along with a unique HSM state id for
each state:

Table 17. HSM Hart States

State ID State Name Description

0 STARTED The hart is physically powered-up and executing
normally.

1 STOPPED The hart is not executing in supervisor-mode or any
lower privilege mode. It is probably powered-down by
the SBI implementation if the underlying platform has
a mechanism to physically power-down harts.

2 START_PENDING Some other hart has requested to start (or power-up)
the hart from the STOPPED state and the SBI
implementation is still working to get the hart in the
STARTED state.

3 STOP_PENDING The hart has requested to stop (or power-down) itself
from the STARTED state and the SBI implementation is
still working to get the hart in the STOPPED state.

4 SUSPENDED This hart is in a platform specific suspend (or low
power) state.

5 SUSPEND_PENDING The hart has requested to put itself in a platform
specific low power state from the STARTED state and
the SBI implementation is still working to get the hart
in the platform specific SUSPENDED state.

6 RESUME_PENDING An interrupt or platform specific hardware event has
caused the hart to resume normal execution from the
SUSPENDED state and the SBI implementation is still
working to get the hart in the STARTED state.

At any point in time, a hart should be in one of the above mentioned hart states. The hart state
transitions by the SBI implementation should follow the state machine shown below in the Figure 3.

26

Figure 3. SBI HSM State Machine

A platform can have multiple harts grouped into hierarchical topology groups (namely cores,
clusters, nodes, etc.) with separate platform specific low-power states for each hierarchical group.
These platform specific low-power states of hierarchical topology groups can be represented as
platform specific suspend states of a hart. An SBI implementation can utilize the suspend states of
higher topology groups using one of the following approaches:

1. Platform-coordinated: In this approach, when a hart becomes idle the supervisor-mode
power-managment software will request deepest suspend state for the hart and higher topology
groups. An SBI implementation should choose a suspend state at higher topology group which
is:

a. Not deeper than the specified suspend state

b. Wake-up latency is not higher than the wake-up latency of the specified suspend state

2. OS-inititated: In this approach, the supervisor-mode power-managment software will directly
request a suspend state for higher topology group after the last hart in that group becomes idle.
When a hart becomes idle, the supervisor-mode power-managment software will always select
suspend state for the hart itself but it will select a suspend state for a higher topology group
only if the hart is the last running hart in the group. An SBI implementation should:

a. Never choose a suspend state for higher topology group different from the specified suspend
state

b. Always prefer most recent suspend state requested for higher topology group

9.1. Function: Hart start (FID #0)

struct sbiret sbi_hart_start(unsigned long hartid,

27

 unsigned long start_addr,
 unsigned long opaque)

Request the SBI implementation to start executing the target hart in supervisor-mode, at the
address specified by start_addr, with the specific register values described in Table 18.

Table 18. HSM Hart Start Register State

Register Name Register Value

satp 0

sstatus.SIE 0

a0 hartid

a1 opaque parameter

All other registers remain in an undefined state.

A single unsigned long parameter is sufficient as start_addr, because the hart will
start execution in supervisor-mode with the MMU off, hence start_addr must be
less than XLEN bits wide.

This call is asynchronous — more specifically, the sbi_hart_start() may return before the target
hart starts executing as long as the SBI implementation is capable of ensuring the return code is
accurate. If the SBI implementation is a platform runtime firmware executing in machine-mode (M-
mode), then it MUST configure any physical memory protection it supports, such as that defined by
PMP, and other M-mode state, before transferring control to supervisor-mode software.

The hartid parameter specifies the target hart which is to be started.

The start_addr parameter points to a runtime-specified physical address, where the hart can start
executing in supervisor-mode.

The opaque parameter is an XLEN-bit value which will be set in the a1 register when the hart starts
executing at start_addr.

The possible error codes returned in sbiret.error are shown in the Table 19 below.

Table 19. HSM Hart Start Errors

Error code Description

SBI_SUCCESS Hart was previously in stopped state. It will start executing from
start_addr.

SBI_ERR_INVALID_ADDRESS start_addr is not valid, possibly due to the following reasons:
* It is not a valid physical address.
* Executable access to the address is prohibited by a physical
memory protection mechanism or H-extension G-stage for
supervisor-mode.

28

Error code Description

SBI_ERR_INVALID_PARAM hartid is not a valid hartid as the corresponding hart cannot be
started in supervisor mode.

SBI_ERR_ALREADY_AVAILABLE The given hartid is already started.

SBI_ERR_FAILED The start request failed for unspecified or unknown other
reasons.

9.2. Function: Hart stop (FID #1)

struct sbiret sbi_hart_stop(void)

Request the SBI implementation to stop executing the calling hart in supervisor-mode and return its
ownership to the SBI implementation. This call is not expected to return under normal conditions.
The sbi_hart_stop() must be called with supervisor-mode interrupts disabled.

The possible error codes returned in sbiret.error are shown in the Table 20 below.

Table 20. HSM Hart Stop Errors

Error code Description

SBI_ERR_FAILED Failed to stop execution of the current hart

9.3. Function: Hart get status (FID #2)

struct sbiret sbi_hart_get_status(unsigned long hartid)

Get the current status (or HSM state id) of the given hart in sbiret.value, or an error through
sbiret.error.

The hartid parameter specifies the target hart for which status is required.

The possible status (or HSM state id) values returned in sbiret.value are described in Table 17.

The possible error codes returned in sbiret.error are shown in the Table 21 below.

Table 21. HSM Hart Get Status Errors

Error code Description

SBI_ERR_INVALID_PARAM The given hartid is not valid.

The harts may transition HSM states at any time due to any concurrent sbi_hart_start() or
sbi_hart_stop() or sbi_hart_suspend() calls, the return value from this function may not represent
the actual state of the hart at the time of return value verification.

29

9.4. Function: Hart suspend (FID #3)

struct sbiret sbi_hart_suspend(uint32_t suspend_type,
 unsigned long resume_addr,
 unsigned long opaque)

Request the SBI implementation to put the calling hart in a platform specific suspend (or low
power) state specified by the suspend_type parameter. The hart will automatically come out of
suspended state and resume normal execution when it receives an interrupt or platform specific
hardware event.

The platform specific suspend states for a hart can be either retentive or non-retentive in nature. A
retentive suspend state will preserve hart register and CSR values for all privilege modes whereas a
non-retentive suspend state will not preserve hart register and CSR values.

Resuming from a retentive suspend state is straight forward and the supervisor-mode software will
see SBI suspend call return without any failures. The resume_addr parameter is unused during
retentive suspend.

Resuming from a non-retentive suspend state is relatively more involved and requires software to
restore various hart registers and CSRs for all privilege modes. Upon resuming from non-retentive
suspend state, the hart will jump to supervisor-mode at address specified by resume_addr with
specific registers values described in the Table 22 below.

Table 22. HSM Hart Resume Register State

Register Name Register Value

satp 0

sstatus.SIE 0

a0 hartid

a1 opaque parameter

All other registers remain in an undefined state.

A single unsigned long parameter is sufficient for resume_addr, because the hart will
resume execution in supervisor-mode with the MMU off, hence resume_addr must
be less than XLEN bits wide.

The suspend_type parameter is 32 bits wide and the possible values are shown in Table 23 below.

Table 23. HSM Hart Suspend Types

Value Description

0x00000000 Default retentive suspend

0x00000001 - 0x0FFFFFFF Reserved for future use

0x10000000 - 0x7FFFFFFF Platform specific retentive suspend

30

Value Description

0x80000000 Default non-retentive suspend

0x80000001 - 0x8FFFFFFF Reserved for future use

0x90000000 - 0xFFFFFFFF Platform specific non-retentive suspend

The resume_addr parameter points to a runtime-specified physical address, where the hart can
resume execution in supervisor-mode after a non-retentive suspend.

The opaque parameter is an XLEN-bit value which will be set in the a1 register when the hart
resumes execution at resume_addr after a non-retentive suspend.

The possible error codes returned in sbiret.error are shown in the Table 24 below.

Table 24. HSM Hart Suspend Errors

Error code Description

SBI_SUCCESS Hart has suspended and resumed successfully from a retentive
suspend state.

SBI_ERR_INVALID_PARAM suspend_type is reserved or is platform-specific and
unimplemented.

SBI_ERR_NOT_SUPPORTED suspend_type is not reserved and is implemented, but the
platform does not support it due to one or more missing
dependencies.

SBI_ERR_INVALID_ADDRESS resume_addr is not valid, possibly due to the following reasons:
* It is not a valid physical address.
* Executable access to the address is prohibited by a physical
memory protection mechanism or H-extension G-stage for
supervisor-mode.

SBI_ERR_FAILED The suspend request failed for unspecified or unknown other
reasons.

9.5. Function Listing
Table 25. HSM Function List

Function Name SBI Version FID EID

sbi_hart_start 0.2 0 0x48534D

sbi_hart_stop 0.2 1 0x48534D

sbi_hart_get_status 0.2 2 0x48534D

sbi_hart_suspend 0.3 3 0x48534D

31

Chapter 10. System Reset Extension (EID
#0x53525354 "SRST")
The System Reset Extension provides a function that allow the supervisor software to request
system-level reboot or shutdown. The term "system" refers to the world-view of supervisor
software and the underlying SBI implementation could be provided by machine mode firmware or
a hypervisor.

10.1. Function: System reset (FID #0)

struct sbiret sbi_system_reset(uint32_t reset_type, uint32_t reset_reason)

Reset the system based on provided reset_type and reset_reason. This is a synchronous call and
does not return if it succeeds.

The reset_type parameter is 32 bits wide and it’s possible values are shown in the Table 26 below.

Table 26. SRST System Reset Types

Value Description

0x00000000 Shutdown

0x00000001 Cold reboot

0x00000002 Warm reboot

0x00000003 - 0xEFFFFFFF Reserved for future use

0xF0000000 - 0xFFFFFFFF Vendor or platform specific reset type

The reset_reason is an optional parameter representing the reason for system reset. This parameter
is 32 bits wide with possible values shown in the Table 27 below

Table 27. SRST System Reset Reasons

Value Description

0x00000000 No reason

0x00000001 System failure

0x00000002 - 0xDFFFFFFF Reserved for future use

0xE0000000 - 0xEFFFFFFF SBI implementation specific reset reason

0xF0000000 - 0xFFFFFFFF Vendor or platform specific reset reason

When supervisor software is running natively, the SBI implementation is provided by machine
mode firmware. In this case, shutdown is equivalent to a physical power down of the entire system
and cold reboot is equivalent to a physical power cycle of the entire system. Further, warm reboot
is equivalent to a power cycle of the main processor and parts of the system, but not the entire
system. For example, on a server class system with a BMC (board management controller), a warm

32

reboot will not power cycle the BMC whereas a cold reboot will definitely power cycle the BMC.

When supervisor software is running inside a virtual machine, the SBI implementation is provided
by a hypervisor. Shutdown, cold reboot and warm reboot will behave functionally the same as the
native case, but might not result in any physical power changes.

The possible error codes returned in sbiret.error are shown in the Table 28 below.

Table 28. SRST System Reset Errors

Error code Description

SBI_ERR_INVALID_PARAM At least one of reset_type or reset_reason is reserved or is
platform-specific and unimplemented.

SBI_ERR_NOT_SUPPORTED reset_type is not reserved and is implemented, but the platform
does not support it due to one or more missing dependencies.

SBI_ERR_FAILED The reset request failed for unspecified or unknown other
reasons.

10.2. Function Listing
Table 29. SRST Function List

Function Name SBI Version FID EID

sbi_system_reset 0.3 0 0x53525354

33

Chapter 11. Performance Monitoring Unit
Extension (EID #0x504D55 "PMU")
The RISC-V hardware performance counters such as mcycle, minstret, and mhpmcounterX CSRs are
accessible as read-only from supervisor-mode using cycle, instret, and hpmcounterX CSRs. The SBI
performance monitoring unit (PMU) extension is an interface for supervisor-mode to configure and
use the RISC-V hardware performance counters with assistance from the machine-mode (or
hypervisor-mode). These hardware performance counters can only be started, stopped, or
configured from machine-mode using mcountinhibit and mhpmeventX CSRs. Due to this, a machine-
mode SBI implementation may choose to disallow SBI PMU extension if mcountinhibit CSR is not
implemented by the RISC-V platform.

A RISC-V platform generally supports monitoring of various hardware events using a limited
number of hardware performance counters which are up to 64 bits wide. In addition, a SBI
implementation can also provide firmware performance counters which can monitor firmware
events such as number of misaligned load/store instructions, number of RFENCEs, number of IPIs,
etc. All firmware counters must have same number of bits and can be up to 64 bits wide.

The SBI PMU extension provides:

1. An interface for supervisor-mode software to discover and configure per-hart
hardware/firmware counters

2. A typical perf compatible interface for hardware/firmware performance counters and events

3. Full access to microarchitecture’s raw event encodings

To define SBI PMU extension calls, we first define important entities counter_idx, event_idx, and
event_data. The counter_idx is a logical number assigned to each hardware/firmware counter. The
event_idx represents a hardware (or firmware) event whereas the event_data is 64 bits wide and
represents additional configuration (or parameters) for a hardware (or firmware) event.

The event_idx is a 20 bits wide number encoded as follows:

 event_idx[19:16] = type
 event_idx[15:0] = code

11.1. Event: Hardware general events (Type #0)
The event_idx.type (i.e. event type) should be 0x0 for all hardware general events and each
hardware general event is identified by an unique event_idx.code (i.e. event code) described in the
Table 30 below.

Table 30. PMU Hardware Events

34

https://en.wikipedia.org/wiki/Perf_(Linux)

General Event Name Code Description

SBI_PMU_HW_NO_EVENT 0 Unused event because event_idx
cannot be zero

SBI_PMU_HW_CPU_CYCLES 1 Event for each CPU cycle

SBI_PMU_HW_INSTRUCTIONS 2 Event for each completed
instruction

SBI_PMU_HW_CACHE_REFERENCES 3 Event for cache hit

SBI_PMU_HW_CACHE_MISSES 4 Event for cache miss

SBI_PMU_HW_BRANCH_INSTRUCTIONS 5 Event for a branch instruction

SBI_PMU_HW_BRANCH_MISSES 6 Event for a branch misprediction

SBI_PMU_HW_BUS_CYCLES 7 Event for each BUS cycle

SBI_PMU_HW_STALLED_CYCLES_FRONTEND 8 Event for a stalled cycle in
microarchitecture frontend

SBI_PMU_HW_STALLED_CYCLES_BACKEND 9 Event for a stalled cycle in
microarchitecture backend

SBI_PMU_HW_REF_CPU_CYCLES 10 Event for each reference CPU
cycle

The event_data (i.e. event data) is unused for hardware general events and all non-zero values of
event_data are reserved for future use.

A RISC-V platform might halt the CPU clock when it enters WAIT state using the
WFI instruction or enters platform specific SUSPEND state using the SBI HSM hart
suspend call.

The SBI_PMU_HW_CPU_CYCLES event counts CPU clock cycles as counted by the
cycle CSR. These may be variable frequency cycles, and are not counted when the
CPU clock is halted.

The SBI_PMU_HW_REF_CPU_CYCLES counts fixed-frequency clock cycles while
the CPU clock is not halted. The fixed-frequency of counting might, for example, be
the same frequency at which the time CSR counts.

The SBI_PMU_HW_BUS_CYCLES counts fixed-frequency clock cycles. The fixed-
frequency of counting might be the same frequency at which the time CSR counts,
or may be the frequency of the clock at the boundary between the hart (and it’s
private caches) and the rest of the system.

11.2. Event: Hardware cache events (Type #1)
The event_idx.type (i.e. event type) should be 0x1 for all hardware cache events and each hardware
cache event is identified by an unique event_idx.code (i.e. event code) which is encoded as follows:

35

 event_idx.code[15:3] = cache_id
 event_idx.code[2:1] = op_id
 event_idx.code[0:0] = result_id

Below tables show possible values of: event_idx.code.cache_id (i.e. cache event id),
event_idx.code.op_id (i.e. cache operation id) and event_idx.code.result_id (i.e. cache result id).

Table 31. PMU Cache Event ID

Cache Event Name Event ID Description

SBI_PMU_HW_CACHE_L1D 0 Level1 data cache event

SBI_PMU_HW_CACHE_L1I 1 Level1 instruction cache event

SBI_PMU_HW_CACHE_LL 2 Last level cache event

SBI_PMU_HW_CACHE_DTLB 3 Data TLB event

SBI_PMU_HW_CACHE_ITLB 4 Instruction TLB event

SBI_PMU_HW_CACHE_BPU 5 Branch predictor unit event

SBI_PMU_HW_CACHE_NODE 6 NUMA node cache event

Table 32. PMU Cache Operation ID

Cache Operation Name Operation ID Description

SBI_PMU_HW_CACHE_OP_READ 0 Read cache line

SBI_PMU_HW_CACHE_OP_WRITE 1 Write cache line

SBI_PMU_HW_CACHE_OP_PREFETCH 2 Prefetch cache line

Table 33. PMU Cache Operation Result ID

Cache Result Name Result ID Description

SBI_PMU_HW_CACHE_RESULT_ACCESS 0 Cache access

SBI_PMU_HW_CACHE_RESULT_MISS 1 Cache miss

The event_data (i.e. event data) is unused for hardware cache events and all non-zero values of
event_data are reserved for future use.

11.3. Event: Hardware raw events (Type #2)
The event_idx.type (i.e. event type) should be 0x2 for all hardware raw events and event_idx.code
(i.e. event code) should be zero.

On RISC-V platform with 32 bits wide mhpmeventX CSRs, the event_data configuration (or parameter)
should have the 32-bit value to to be programmed in the mhpmeventX CSR.

On RISC-V platform with 64 bits wide mhpmeventX CSRs, the event_data configuration (or parameter)
should have the 48-bit value to to be programmed in the lower 48-bits of mhpmeventX CSR and the SBI

36

implementation shall determine the value to be programmed in the upper 16 bits of mhpmeventX CSR.

The RISC-V platform hardware implementation may choose to define the expected
value to be written to mhpmeventX CSR for a hardware event. In case of hardware
general/cache events, the RISC-V platform hardware implementation may use the
zero-extended event_idx as the expected value for simplicity.

11.4. Event: Firmware events (Type #15)
The event_idx.type (i.e. event type) should be 0xf for all firmware events and each firmware event
is identified by an unique event_idx.code (i.e. event code) described in the Table 34 below.

Table 34. PMU Firmware Events

Firmware Event Name Code Description

SBI_PMU_FW_MISALIGNED_LOAD 0 Misaligned load trap event

SBI_PMU_FW_MISALIGNED_STORE 1 Misaligned store trap event

SBI_PMU_FW_ACCESS_LOAD 2 Load access trap event

SBI_PMU_FW_ACCESS_STORE 3 Store access trap event

SBI_PMU_FW_ILLEGAL_INSN 4 Illegal instruction trap event

SBI_PMU_FW_SET_TIMER 5 Set timer event

SBI_PMU_FW_IPI_SENT 6 Sent IPI to other hart event

SBI_PMU_FW_IPI_RECEIVED 7 Received IPI from other hart
event

SBI_PMU_FW_FENCE_I_SENT 8 Sent FENCE.I request to other
hart event

SBI_PMU_FW_FENCE_I_RECEIVED 9 Received FENCE.I request
from other hart event

SBI_PMU_FW_SFENCE_VMA_SENT 10 Sent SFENCE.VMA request to
other hart event

SBI_PMU_FW_SFENCE_VMA_RECEIVED 11 Received SFENCE.VMA
request from other hart event

SBI_PMU_FW_SFENCE_VMA_ASID_SENT 12 Sent SFENCE.VMA with ASID
request to other hart event

SBI_PMU_FW_SFENCE_VMA_ASID_RECEIVED 13 Received SFENCE.VMA with
ASID request from other hart
event

SBI_PMU_FW_HFENCE_GVMA_SENT 14 Sent HFENCE.GVMA request
to other hart event

SBI_PMU_FW_HFENCE_GVMA_RECEIVED 15 Received HFENCE.GVMA
request from other hart event

37

Firmware Event Name Code Description

SBI_PMU_FW_HFENCE_GVMA_VMID_SENT 16 Sent HFENCE.GVMA with
VMID request to other hart
event

SBI_PMU_FW_HFENCE_GVMA_VMID_RECEIVED 17 Received HFENCE.GVMA with
VMID request from other hart
event

SBI_PMU_FW_HFENCE_VVMA_SENT 18 Sent HFENCE.VVMA request
to other hart event

SBI_PMU_FW_HFENCE_VVMA_RECEIVED 19 Received HFENCE.VVMA
request from other hart event

SBI_PMU_FW_HFENCE_VVMA_ASID_SENT 20 Sent HFENCE.VVMA with
ASID request to other hart
event

SBI_PMU_FW_HFENCE_VVMA_ASID_RECEIVED 21 Received HFENCE.VVMA with
ASID request from other hart
event

Reserved 22 - 255 Reserved for future use

Implementation specific events 256 - 65534 SBI implementation specific
firmware events

SBI_PMU_FW_PLATFORM 65535 RISC-V platform specific
firmware events, where the
event_data configuration (or
parameter) contains the event
encoding.

For all firmware events except SBI_PMU_FW_PLATFORM, the event_data configuration (or
parameter) is unused and all non-zero values of event_data are reserved for future use.

11.5. Function: Get number of counters (FID #0)

struct sbiret sbi_pmu_num_counters()

Returns the number of counters (both hardware and firmware) in sbiret.value and always returns
SBI_SUCCESS in sbiret.error.

11.6. Function: Get details of a counter (FID #1)

struct sbiret sbi_pmu_counter_get_info(unsigned long counter_idx)

Get details about the specified counter such as underlying CSR number, width of the counter, type

38

of counter hardware/firmware, etc.

The counter_info returned by this SBI call is encoded as follows:

 counter_info[11:0] = CSR (12bit CSR number)
 counter_info[17:12] = Width (One less than number of bits in CSR)
 counter_info[XLEN-2:18] = Reserved for future use
 counter_info[XLEN-1] = Type (0 = hardware and 1 = firmware)

If counter_info.type == 1 then counter_info.csr and counter_info.width should be ignored.

Returns the counter_info described above in sbiret.value.

The possible error codes returned in sbiret.error are shown in the Table 35 below.

Table 35. PMU Counter Get Info Errors

Error code Description

SBI_SUCCESS counter_info read successfully.

SBI_ERR_INVALID_PARAM counter_idx points to an invalid counter.

11.7. Function: Find and configure a matching counter
(FID #2)

struct sbiret sbi_pmu_counter_config_matching(unsigned long counter_idx_base,
 unsigned long counter_idx_mask,
 unsigned long config_flags,
 unsigned long event_idx,
 uint64_t event_data)

Find and configure a counter from a set of counters which is not started (or enabled) and can
monitor the specified event. The counter_idx_base and counter_idx_mask parameters represent the
set of counters whereas event_idx represents the event to be monitored and event_data represents
any additional event configuration.

The config_flags parameter represents additional counter configuration and filter flags. The bit
definitions of the config_flags parameter are shown in the Table 36 below.

Table 36. PMU Counter Config Match Flags

Flag Name Bits Description

SBI_PMU_CFG_FLAG_SKIP_MATCH 0:0 Skip the counter matching

SBI_PMU_CFG_FLAG_CLEAR_VALUE 1:1 Clear (or zero) the counter
value in counter
configuration

39

Flag Name Bits Description

SBI_PMU_CFG_FLAG_AUTO_START 2:2 Start the counter after
configuring a matching
counter

SBI_PMU_CFG_FLAG_SET_VUINH 3:3 Event counting inhibited
in VU-mode

SBI_PMU_CFG_FLAG_SET_VSINH 4:4 Event counting inhibited
in VS-mode

SBI_PMU_CFG_FLAG_SET_UINH 5:5 Event counting inhibited
in U-mode

SBI_PMU_CFG_FLAG_SET_SINH 6:6 Event counting inhibited
in S-mode

SBI_PMU_CFG_FLAG_SET_MINH 7:7 Event counting inhibited
in M-mode

RESERVED 8:(XLEN-1) All non-zero values are
reserved for future use

When SBI_PMU_CFG_FLAG_SKIP_MATCH is set in config_flags, the SBI
implementation will unconditionally select the first counter from the set of
counters specified by the counter_idx_base and counter_idx_mask.

The SBI_PMU_CFG_FLAG_AUTO_START flag in config_flags has no impact on the
counter value.

The config_flags[3:7] bits are event filtering hints so these can be ignored or
overridden by the SBI implementation for security concerns or due to lack of event
filtering support in the underlying RISC-V platform.

Returns the counter_idx in sbiret.value upon success.

In case of failure, the possible error codes returned in sbiret.error are shown in the Table 37
below.

Table 37. PMU Counter Config Match Errors

Error code Description

SBI_SUCCESS counter found and configured successfully.

SBI_ERR_INVALID_PARAM set of counters has at least one invalid counter.

SBI_ERR_NOT_SUPPORTED none of the counters can monitor the specified
event.

40

11.8. Function: Start a set of counters (FID #3)

struct sbiret sbi_pmu_counter_start(unsigned long counter_idx_base,
 unsigned long counter_idx_mask,
 unsigned long start_flags,
 uint64_t initial_value)

Start or enable a set of counters on the calling hart with the specified initial value. The
counter_idx_base and counter_idx_mask parameters represent the set of counters whereas the
initial_value parameter specifies the initial value of the counter.

The bit definitions of the start_flags parameter are shown in the Table 38 below.

Table 38. PMU Counter Start Flags

Flag Name Bits Description

SBI_PMU_START_SET_INIT_VALUE 0:0 Set the value of counters
based on the initial_value
parameter

SBI_PMU_START_FLAG_INIT_SNAPSHOT 1:1 Initialize the given counters
from shared memory if
available.

RESERVED 2:(XLEN-1) Reserved for future use

When SBI_PMU_START_SET_INIT_VALUE is not set in start_flags, the counter
value will not be modified and event counting will start from current counter
value.

The shared memory address must be set during boot via sbi_pmu_snapshot_set_shmem before the
SBI_PMU_START_FLAG_INIT_SNAPSHOT flag may be used. The SBI implementation must initialize all the
given valid counters (to be started) from the value set in the shared snapshot memory.

SBI_PMU_START_SET_INIT_VALUE and SBI_PMU_START_FLAG_INIT_SNAPSHOT are mutually
exclusive as the former is only valid for a single counter.

The possible error codes returned in sbiret.error are shown in the Table 39 below.

Table 39. PMU Counter Start Errors

Error code Description

SBI_SUCCESS counter started successfully.

SBI_ERR_INVALID_PARAM set of counters has at least one invalid counter.

SBI_ERR_ALREADY_STARTED set of counters includes at least one counter which is
already started.

41

Error code Description

SBI_ERR_NO_SHMEM the snapshot shared memory is not available and
SBI_PMU_START_FLAG_INIT_SNAPSHOT is set in the flags.

11.9. Function: Stop a set of counters (FID #4)

struct sbiret sbi_pmu_counter_stop(unsigned long counter_idx_base,
 unsigned long counter_idx_mask,
 unsigned long stop_flags)

Stop or disable a set of counters on the calling hart. The counter_idx_base and counter_idx_mask
parameters represent the set of counters. The bit definitions of the stop_flags parameter are shown
in the Table 40 below.

Table 40. PMU Counter Stop Flags

Flag Name Bits Description

SBI_PMU_STOP_FLAG_RESET 0:0 Reset the counter to event
mapping.

SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT 1:1 Save a snapshot of the given
counter’s values in the
shared memory if available.

RESERVED 2:(XLEN-1) Reserved for future use

The shared memory address must be set during boot via sbi_pmu_snapshot_set_shmem before the
SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT flag may be used. The SBI implementation must save the current
value of all the stopped counters in the shared memory if SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT is set.
The values corresponding to all other counters must not be modified. The SBI implementation must
additionally update the overflown counter bitmap in the shared memory.

The possible error codes returned in sbiret.error are shown in the Table 41 below.

Table 41. PMU Counter Stop Errors

Error code Description

SBI_SUCCESS counter stopped successfully.

SBI_ERR_INVALID_PARAM set of counters has at least one invalid counter.

SBI_ERR_ALREADY_STOPPED set of counters includes at least one counter which is
already stopped.

SBI_ERR_NO_SHMEM the snapshot shared memory is not available and
SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT is set in the flags.

42

11.10. Function: Read a firmware counter (FID #5)

struct sbiret sbi_pmu_counter_fw_read(unsigned long counter_idx)

Provide the current firmware counter value in sbiret.value. On RV32 systems, the sbiret.value will
only contain the lower 32 bits of the current firmware counter value.

The possible error codes returned in sbiret.error are shown in the Table 42 below.

Table 42. PMU Counter Firmware Read Errors

Error code Description

SBI_SUCCESS firmware counter read successfully.

SBI_ERR_INVALID_PARAM counter_idx points to a hardware counter or an
invalid counter.

11.11. Function: Read a firmware counter high bits
(FID #6)

struct sbiret sbi_pmu_counter_fw_read_hi(unsigned long counter_idx)

Provide the upper 32 bits of the current firmware counter value in sbiret.value. This function
always returns zero in sbiret.value for RV64 (or higher) systems.

The possible error codes returned in sbiret.error are shown in Table 43 below.

Table 43. PMU Counter Firmware Read High Errors

Error code Description

SBI_SUCCESS Firmware counter read successfully.

SBI_ERR_INVALID_PARAM counter_idx points to a hardware counter or an
invalid counter.

11.12. Function: Set PMU snapshot shared memory
(FID #7)

struct sbiret sbi_pmu_snapshot_set_shmem(unsigned long shmem_phys_lo,
 unsigned long shmem_phys_hi,
 unsigned long flags)

Set and enable the PMU snapshot shared memory on the calling hart.

If both shmem_phys_lo and shmem_phys_hi parameters are not all-ones bitwise then shmem_phys_lo

43

specifies the lower XLEN bits and shmem_phys_hi specifies the upper XLEN bits of the snapshot
shared memory physical base address. The shmem_phys_lo MUST be 4096 bytes (i.e. page) aligned
and the size of the snapshot shared memory must be 4096 bytes. The layout of the snapshot shared
memory is described in Table 44.

If both shmem_phys_lo and shmem_phys_hi parameters are all-ones bitwise then the PMU snapshot
shared memory is cleared and disabled.

The flags parameter is reserved for future use and must be zero.

This is an optional function and the SBI implementation may choose not to implement it.

Table 44. SBI PMU Snapshot shared memory layout

Name Offset Size Description

counter_overflow_bitmap 0x0000 8 A bitmap of all logical
overflown counters relative to
the counter_idx_base. This is
valid only if the Sscofpmf ISA
extension is available.
Otherwise, it must be zero.

counter_values 0x0008 512 An array of 64-bit logical
counters where each index
represents the value of each
logical counter associated with
hardware/firmware relative to
the counter_idx_base.

Reserved 0x0208 3576 Reserved for future use

Any future revisions to this structure should be made in a backward compatible manner and will
be associated with an SBI version.

The logical counter indicies in the counter_overflow_bitmap and counter_values array are relative
w.r.t to counter_idx_base argument present in the sbi_pmu_counter_stop and sbi_pmu_counter_start
functions. This allows the users to use snapshot feature for more than XLEN counters if required.

This function should be invoked only once per hart at boot time. Once configured, the SBI
implementation has read/write access to the shared memory when sbi_pmu_counter_stop is invoked
with the SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT flag set. The SBI implementation has read only access
when sbi_pmu_counter_start is invoked with the SBI_PMU_START_FLAG_INIT_SNAPSHOT flag set. The SBI
implementation must not access this memory any other time.

The possible error codes returned in sbiret.error are shown in Table 45 below.

Table 45. PMU Setup Snapshot Area Errors

Error code Description

SBI_SUCCESS Shared memory was set or cleared successfully.

44

Error code Description

SBI_ERR_NOT_SUPPORTED The SBI PMU snapshot functionality is not available
in the SBI implementation.

SBI_ERR_INVALID_PARAM The flags parameter is not zero or the shmem_phys_lo
parameter is not 4096 bytes aligned.

SBI_ERR_INVALID_ADDRESS The shared memory pointed to by the shmem_phys_lo
and shmem_phys_hi parameters is not writable or
does not satisfy other requirements of Section 3.2.

11.13. Function Listing
Table 46. PMU Function List

Function Name SBI Version FID EID

sbi_pmu_num_counters 0.3 0 0x504D55

sbi_pmu_counter_get_info 0.3 1 0x504D55

sbi_pmu_counter_config_matching 0.3 2 0x504D55

sbi_pmu_counter_start 0.3 3 0x504D55

sbi_pmu_counter_stop 0.3 4 0x504D55

sbi_pmu_counter_fw_read 0.3 5 0x504D55

sbi_pmu_counter_fw_read_hi 2.0 6 0x504D55

sbi_pmu_snapshot_set_shmem 2.0 7 0x504D55

45

Chapter 12. Debug Console Extension (EID
#0x4442434E "DBCN")
The debug console extension defines a generic mechanism for debugging and boot-time early prints
from supervisor-mode software.

This extension replaces the legacy console putchar (EID #0x01) and console getchar (EID #0x02)
extensions. The debug console extension allows supervisor-mode software to write or read multiple
bytes in a single SBI call.

If the underlying physical console has extra bits for error checking (or correction) then these extra
bits should be handled by the SBI implementation.

It is recommended that bytes sent/received using the debug console extension
follow UTF-8 character encoding.

12.1. Function: Console Write (FID #0)

struct sbiret sbi_debug_console_write(unsigned long num_bytes,
 unsigned long base_addr_lo,
 unsigned long base_addr_hi)

Write bytes to the debug console from input memory.

The num_bytes parameter specifies the number of bytes in the input memory. The physical base
address of the input memory is represented by two XLEN bits wide parameters. The base_addr_lo
parameter specifies the lower XLEN bits and the base_addr_hi parameter specifies the upper XLEN
bits of the input memory physical base address.

This is a non-blocking SBI call and it may do partial/no writes if the debug console is not able to
accept more bytes.

The number of bytes written is returned in sbiret.value and the possible error codes returned in
sbiret.error are shown in Table 47 below.

Table 47. Debug Console Write Errors

Error code Description

SBI_SUCCESS Bytes written successfully.

SBI_ERR_INVALID_PARAM The memory pointed to by the num_bytes,
base_addr_lo, and base_addr_hi parameters does not
satisfy the requirements described in the Section 3.2

SBI_ERR_DENIED Writes to the debug console is not allowed.

SBI_ERR_FAILED Failed to write due to I/O errors.

46

12.2. Function: Console Read (FID #1)

struct sbiret sbi_debug_console_read(unsigned long num_bytes,
 unsigned long base_addr_lo,
 unsigned long base_addr_hi)

Read bytes from the debug console into an output memory.

The num_bytes parameter specifies the maximum number of bytes which can be written into the
output memory. The physical base address of the output memory is represented by two XLEN bits
wide parameters. The base_addr_lo parameter specifies the lower XLEN bits and the base_addr_hi
parameter specifies the upper XLEN bits of the output memory physical base address.

This is a non-blocking SBI call and it will not write anything into the output memory if there are no
bytes to be read in the debug console.

The number of bytes read is returned in sbiret.value and the possible error codes returned in
sbiret.error are shown in Table 48 below.

Table 48. Debug Console Read Errors

Error code Description

SBI_SUCCESS Bytes read successfully.

SBI_ERR_INVALID_PARAM The memory pointed to by the num_bytes,
base_addr_lo, and base_addr_hi parameters does not
satisfy the requirements described in the Section 3.2

SBI_ERR_DENIED Reads from the debug console is not allowed.

SBI_ERR_FAILED Failed to read due to I/O errors.

12.3. Function: Console Write Byte (FID #2)

struct sbiret sbi_debug_console_write_byte(uint8_t byte)

Write a single byte to the debug console.

This is a blocking SBI call and it will only return after writing the specified byte to the debug
console. It will also return, with SBI_ERR_FAILED, if there are I/O errors.

The sbiret.value is set to zero and the possible error codes returned in sbiret.error are shown in
Table 49 below.

Table 49. Debug Console Write Byte Errors

Error code Description

SBI_SUCCESS Byte written successfully.

47

Error code Description

SBI_ERR_DENIED Write to the debug console is not allowed.

SBI_ERR_FAILED Failed to write the byte due to I/O errors.

12.4. Function Listing
Table 50. DBCN Function List

Function Name SBI Version FID EID

sbi_debug_console_write 2.0 0 0x4442434E

sbi_debug_console_read 2.0 1 0x4442434E

sbi_debug_console_write_byte 2.0 2 0x4442434E

48

Chapter 13. System Suspend Extension (EID
#0x53555350 "SUSP")
The system suspend extension defines a set of system-level sleep states and a function which allows
the supervisor-mode software to request that the system transitions to a sleep state. Sleep states are
identified with 32-bit wide identifiers (sleep_type). The possible values for the identifiers are shown
in Table 51.

The term "system" refers to the world-view of the supervisor software domain invoking the call.
System suspend may only suspend the part of the overall system which is visible to the invoking
supervisor software domain.

The system suspend extension does not provide any way for supported sleep types to be probed.
Platforms are expected to specify their supported system sleep types and per-type wake up devices
in their hardware descriptions. The SUSPEND_TO_RAM sleep type is the one exception, and its presence
is implied by that of the extension.

Table 51. SUSP System Sleep Types

Type Name Description

0 SUSPEND_TO_RAM This is a “suspend to RAM” sleep type,
similar to ACPI’s S2 or S3. Entry requires all
but the calling hart be in the HSM STOPPED
state and all hart registers and CSRs saved
to RAM.

0x00000001 -
0x7fffffff

Reserved for future use

0x80000000 -
0xffffffff

Platform-specific system sleep types

13.1. Function: System Suspend (FID #0)

struct sbiret sbi_system_suspend(uint32_t sleep_type,
 unsigned long resume_addr,
 unsigned long opaque)

A return from a sbi_system_suspend() call implies an error and an error code from Table 53 will be
in sbiret.error. A successful suspend and wake up, results in the hart which initiated the suspend,
resuming from the STOPPED state. To resume, the hart will jump to supervisor-mode, at the address
specified by resume_addr, with the specific register values described in Table 52.

Table 52. SUSP System Resume Register State

Register Name Register Value

satp 0

49

Register Name Register Value

sstatus.SIE 0

a0 hartid

a1 opaque parameter

All other registers remain in an undefined state.

A single unsigned long parameter is sufficient for resume_addr, because the hart will
resume execution in supervisor-mode with the MMU off, hence resume_addr must
be less than XLEN bits wide.

The resume_addr parameter points to a runtime-specified physical address, where the hart can
resume execution in supervisor-mode after a system suspend.

The opaque parameter is an XLEN-bit value which will be set in the a1 register when the hart
resumes execution at resume_addr after a system suspend.

Besides ensuring all entry criteria for the selected sleep type are met, such as ensuring other harts
are in the STOPPED state, the caller must ensure all power units and domains are in a state
compatible with the selected sleep type. The preparation of the power units, power domains, and
wake-up devices used for resumption from the system sleep state is platform specific and beyond
the scope of this specification.

When supervisor software is running inside a virtual machine, the SBI implementation is provided
by a hypervisor. System suspend will behave similarly to the native case from the point of view of
the supervisor software.

The possible error codes returned in sbiret.error are shown in Table 53.

Table 53. SUSP System Suspend Errors

Error code Description

SBI_ERR_INVALID_PARAM sleep_type is reserved or is platform-specific and
unimplemented.

SBI_ERR_NOT_SUPPORTED sleep_type is not reserved and is implemented, but the platform
does not support it due to one or more missing dependencies.

SBI_ERR_INVALID_ADDRESS resume_addr is not valid, possibly due to the following reasons:
* It is not a valid physical address.
* Executable access to the address is prohibited by a physical
memory protection mechanism or H-extension G-stage for
supervisor mode.

SBI_ERR_DENIED The suspend request failed due to unsatisfied entry criteria.

SBI_ERR_FAILED The suspend request failed for unspecified or unknown other
reasons.

50

13.2. Function Listing
Table 54. SUSP Function List

Function Name SBI Version FID EID

sbi_system_suspend 2.0 0 0x53555350

51

Chapter 14. CPPC Extension (EID
#0x43505043 "CPPC")
ACPI defines the Collaborative Processor Performance Control (CPPC) mechanism, which is an
abstract and flexible mechanism for the supervisor-mode power-management software to
collaborate with an entity in the platform to manage the performance of the processors.

The SBI CPPC extension provides an abstraction to access the CPPC registers through SBI calls. The
CPPC registers can be memory locations shared with a separate platform entity such as a BMC.
Even though CPPC is defined in the ACPI specification, it may be possible to implement a CPPC
driver based on Device Tree.

Table 55 defines 32-bit identifiers for all CPPC registers to be used by the SBI CPPC functions. The
first half of the 32-bit register space corresponds to the registers as defined by the ACPI
specification. The second half provides the information not defined in the ACPI specification, but is
additionally required by the supervisor-mode power-management software.

Table 55. CPPC Registers

Register ID Register Bit
Width

Attribut
e

Description

0x00000000 HighestPerformance 32 Read-
only

ACPI Spec 6.5:
8.4.6.1.1.1

0x00000001 NominalPerformance 32 Read-
only

ACPI Spec 6.5:
8.4.6.1.1.2

0x00000002 LowestNonlinearPerforman
ce

32 Read-
only

ACPI Spec 6.5:
8.4.6.1.1.4

0x00000003 LowestPerformance 32 Read-
only

ACPI Spec 6.5:
8.4.6.1.1.5

0x00000004 GuaranteedPerformanceReg
ister

32 Read-
only

ACPI Spec 6.5:
8.4.6.1.1.6

0x00000005 DesiredPerformanceRegister 32 Read /
Write

ACPI Spec 6.5:
8.4.6.1.2.3

0x00000006 MinimumPerformanceRegis
ter

32 Read /
Write

ACPI Spec 6.5:
8.4.6.1.2.2

0x00000007 MaximumPerformanceRegis
ter

32 Read /
Write

ACPI Spec 6.5:
8.4.6.1.2.1

0x00000008 PerformanceReductionToler
anceRegister

32 Read /
Write

ACPI Spec 6.5:
8.4.6.1.2.4

0x00000009 TimeWindowRegister 32 Read /
Write

ACPI Spec 6.5:
8.4.6.1.2.5

0x0000000A CounterWraparoundTime 32 / 64 Read-
only

ACPI Spec 6.5:
8.4.6.1.3.1

52

Register ID Register Bit
Width

Attribut
e

Description

0x0000000B ReferencePerformanceCoun
terRegister

32 / 64 Read-
only

ACPI Spec 6.5:
8.4.6.1.3.1

0x0000000C DeliveredPerformanceCount
erRegister

32 / 64 Read-
only

ACPI Spec 6.5:
8.4.6.1.3.1

0x0000000D PerformanceLimitedRegister 32 Read /
Write

ACPI Spec 6.5:
8.4.6.1.3.2

0x0000000E CPPCEnableRegister 32 Read /
Write

ACPI Spec 6.5:
8.4.6.1.4

0x0000000F AutonomousSelectionEnable 32 Read /
Write

ACPI Spec 6.5:
8.4.6.1.5

0x00000010 AutonomousActivityWindo
wRegister

32 Read /
Write

ACPI Spec 6.5:
8.4.6.1.6

0x00000011 EnergyPerformancePreferen
ceRegister

32 Read /
Write

ACPI Spec 6.5:
8.4.6.1.7

0x00000012 ReferencePerformance 32 Read-
only

ACPI Spec 6.5:
8.4.6.1.1.3

0x00000013 LowestFrequency 32 Read-
only

ACPI Spec 6.5:
8.4.6.1.1.7

0x00000014 NominalFrequency 32 Read-
only

ACPI Spec 6.5:
8.4.6.1.1.7

0x00000015 -
0x7FFFFFFF

Reserved for
future use.

0x80000000 TransitionLatency 32 Read-
only

Provides the
maximum (worst-
case) performance
state transition
latency in
nanoseconds.

0x80000001 -
0xFFFFFFFF

Reserved for
future use.

14.1. Function: Probe CPPC register (FID #0)

struct sbiret sbi_cppc_probe(uint32_t cppc_reg_id)

Probe whether the CPPC register as specified by the cppc_reg_id parameter is implemented or not
by the platform.

If the register is implemented, sbiret.value will contain the register width. If the register is not

53

implemented, sbiret.value will be set to 0.

The possible error codes returned in sbiret.error are shown in Table 56.

Table 56. CPPC Probe Errors

Error code Description

SBI_SUCCESS Probe completed successfully.

SBI_ERR_INVALID_PARAM cppc_reg_id is reserved.

SBI_ERR_FAILED The probe request failed for unspecified or unknown other
reasons.

14.2. Function: Read CPPC register (FID #1)

struct sbiret sbi_cppc_read(uint32_t cppc_reg_id)

Reads the register as specified in the cppc_reg_id parameter and returns the value in sbiret.value.
When supervisor mode XLEN is 32, the sbiret.value will only contain the lower 32 bits of the CPPC
register value.

The possible error codes returned in sbiret.error are shown in Table 57.

Table 57. CPPC Read Errors

Error code Description

SBI_SUCCESS Read completed successfully.

SBI_ERR_INVALID_PARAM cppc_reg_id is reserved.

SBI_ERR_NOT_SUPPORTED cppc_reg_id is not implemented by the platform.

SBI_ERR_DENIED cppc_reg_id is a write-only register.

SBI_ERR_FAILED The read request failed for unspecified or unknown other
reasons.

14.3. Function: Read CPPC register high bits (FID #2)

struct sbiret sbi_cppc_read_hi(uint32_t cppc_reg_id)

Reads the upper 32-bit value of the register specified in the cppc_reg_id parameter and returns the
value in sbiret.value. This function always returns zero in sbiret.value when supervisor mode
XLEN is 64 or higher.

The possible error codes returned in sbiret.error are shown in Table 58.

Table 58. CPPC Read Hi Errors

54

Error code Description

SBI_SUCCESS Read completed successfully.

SBI_ERR_INVALID_PARAM cppc_reg_id is reserved.

SBI_ERR_NOT_SUPPORTED cppc_reg_id is not implemented by the platform.

SBI_ERR_DENIED cppc_reg_id is a write-only register.

SBI_ERR_FAILED The read request failed for unspecified or unknown other
reasons.

14.4. Function: Write to CPPC register (FID #3)

struct sbiret sbi_cppc_write(uint32_t cppc_reg_id, uint64_t val)

Writes the value passed in the val parameter to the register as specified in the cppc_reg_id
parameter.

The possible error codes returned in sbiret.error are shown in Table 59.

Table 59. CPPC Write Errors

Error code Description

SBI_SUCCESS Write completed successfully.

SBI_ERR_INVALID_PARAM cppc_reg_id is reserved.

SBI_ERR_NOT_SUPPORTED cppc_reg_id is not implemented by the platform.

SBI_ERR_DENIED cppc_reg_id is a read-only register.

SBI_ERR_FAILED The write request failed for unspecified or unknown other
reasons.

14.5. Function Listing
Table 60. CPPC Function List

Function Name SBI Version FID EID

sbi_cppc_probe 2.0 0 0x43505043

sbi_cppc_read 2.0 1 0x43505043

sbi_cppc_read_hi 2.0 2 0x43505043

sbi_cppc_write 2.0 3 0x43505043

55

Chapter 15. Nested Acceleration Extension
(EID #0x4E41434C "NACL")
Nested virtualization is the ability of a hypervisor to run another hypervisor as a guest. RISC-V
nested virtualization requires an L0 hypervisor (running in hypervisor-mode) to trap-and-emulate
the RISC-V H-extension [priv_v1.12] functionality (such as CSR accesses, HFENCE instructions,
HLV/HSV instructions, etc.) for the L1 hypervisor (running in virtualized supervisor-mode).

The SBI nested acceleration extension defines a shared memory based interface between the SBI
implementation (or L0 hypervisor) and the supervisor software (or L1 hypervisor) which allows
both to collaboratively reduce traps taken by the L0 hypervisor for emulating RISC-V H-extension
functionality. The nested acceleration shared memory allows the L1 hypervisor to batch multiple
RISC-V H-extension CSR accesses and HFENCE requests which are then emulated by the L0
hypervisor upon an explicit synchronization SBI call.

The M-mode firmware should not implement the SBI nested acceleration extension
if the underlying platform has the RISC-V H-extension implemented in hardware.

This SBI extension defines optional features which MUST be discovered by the supervisor software
(or L1 hypervisor) before using the corresponding SBI functions. Each nested acceleration feature is
assigned a unique ID which is an unsigned 32-bit integer. The Table 61 below provides a list of all
nested acceleration features.

Table 61. Nested acceleration features

Feature ID Feature Name Description

0x00000000 SBI_NACL_FEAT_SYNC_CSR Synchronize CSR

0x00000001 SBI_NACL_FEAT_SYNC_HFENCE Synchronize HFENCE

0x00000002 SBI_NACL_FEAT_SYNC_SRET Synchronize SRET

0x00000003 SBI_NACL_FEAT_AUTOSWAP_CSR Autoswap CSR

> 0x00000003 RESERVED Reserved for future use

To use the SBI nested acceleration extension, the supervisor software (or L1 hypervisor) MUST set
up a nested acceleration shared memory physical address for each virtual hart at boot-time. The
physical base address of the nested acceleration shared memory MUST be 4096 bytes (i.e. page)
aligned and the size of the nested acceleration shared memory must be 4096 + (1024 * (XLEN / 8))
bytes. The Table 62 below shows the layout of nested acceleration shared memory.

Table 62. Nested acceleration shared memory layout

Name Offset Size (bytes) Description

Scratch space 0x00000000 4096 Nested acceleration feature specific
data.

56

Name Offset Size (bytes) Description

CSR space 0x00001000 XLEN * 128 An array of 1024 XLEN-bit words
where each word corresponds to a
possible RISC-V H-extension CSR
defined in the Table 2.1 of the RISC-
V privileged specification
[priv_v1.12].

Any nested acceleration feature may define the contents of the scratch space shown in the Table 62
above if required.

The contents of the CSR space shown in the Table 62 above is an array of RISC-V H-extension CSR
values where CSR <x> is at index <i> = ((<x> & 0xc00) >> 2) | (<x> & 0xff). The SBI
implementation (or L0 hypervisor) MUST update the CSR space whenever the state of any RISC-V H-
extension CSR changes unless some nested acceleration feature defines a different behaviour. The
Table 63 below shows CSR space index ranges for all possible 1024 RISC-V H-extension CSRs.

Table 63. Nested acceleration H-extension CSR index ranges

H-extension CSR address SBI NACL CSR space index

[11:10] [9:8] [7:4] Hex Range Hex Range

00 10 xxxx 0x200 - 0x2ff 0x000 - 0x0ff

01 10 0xxx 0x600 - 0x67f 0x100 - 0x17f

01 10 10xx 0x680 - 0x6bf 0x180 - 0x1bf

01 10 11xx 0x6c0 - 0x6ff 0x1c0 - 0x1ff

10 10 0xxx 0xa00 - 0xa7f 0x200 - 0x27f

10 10 10xx 0xa80 - 0xabf 0x280 - 0x2bf

10 10 11xx 0xac0 - 0xaff 0x2c0 - 0x2ff

11 10 0xxx 0xe00 - 0xe7f 0x300 - 0x37f

11 10 10xx 0xe80 - 0xebf 0x380 - 0x3bf

11 10 11xx 0xec0 - 0xeff 0x3c0 - 0x3ff

15.1. Feature: Synchronize CSR (ID #0)
The synchronize CSR feature describes the ability of the SBI implementation (or L0 hypervisor) to
allow supervisor software (or L1 hypervisor) to write RISC-V H-extension CSRs using the CSR space.

This nested acceleration feature defines the scratch space offset range 0x0F80 - 0x0FFF (128 bytes)
as nested CSR dirty bitmap. The nested CSR dirty bitmap contains 1-bit for each possible RISC-V H-
extension CSR.

To write a CSR <x> in nested acceleration shared memory, the supervisor software (or L1
hypervisor) MUST do the following:

1. Compute <i> = ((<x> & 0xc00) >> 2) | (<x> & 0xff)

2. Write a new CSR value at word with index <i> in the CSR space

57

3. Set the <i> bit in the nested CSR dirty bitmap

To synchronize a CSR <x>, the SBI implementation (or L0 hypervisor) MUST do the following:

1. Compute <i> = ((<x> & 0xc00) >> 2) | (<x> & 0xff)

2. If bit <i> is not set in the nested CSR dirty bitmap then goto step 5

3. Emulate write to CSR <x> with the new CSR value taken from the word with index <i> in the CSR
space

4. Clear the <i> bit in the nested CSR dirty bitmap

5. Write back the latest CSR value of CSR <x> to the word with index <i> in the CSR space

When synchronizing multiple CSRs, if the value of a CSR <y> depends on the value of some other
CSR <x> then the SBI implementation (or L0 hypervisor) MUST synchronize CSR <x> before CSR <y>.
For example, the value of CSR hip depends on the value of the CSR hvip, which means hvip is
emulated and written first, followed by hip.

15.2. Feature: Synchronize HFENCE (ID #1)
The synchronize HFENCE feature describes the ability of the SBI implementation (or L0 hypervisor)
to allow supervisor software (or L1 hypervisor) to issue HFENCE using the scratch space.

This nested acceleration feature defines the scratch space offset range 0x0800 - 0x0F7F (1920 bytes)
as an array of nested HFENCE entries. The total number of nested HFENCE entries are 3840 / XLEN
where each nested HFENCE entry consists of four XLEN-bit words.

A nested HFENCE entry is equivalent to an HFENCE over a range of guest addresses. The Table 64
below shows the nested HFENCE entry format whereas Table 65 below provides a list of nested
HFENCE entry types. Upon an explicit synchronize HFENCE request from supervisor software (or
L1 hypervisor), the SBI implementation (or L0 hypervisor) will process nested HFENCE entries with
the Config.Pending bit set. After processing pending nested HFENCE entries, the SBI implementation
(or L0 hypervisor) will clear the Config.Pending bit of these entries.

Table 64. Nested HFENCE entry format

58

Word Name Encoding

0 Config Config information about the nested HFENCE entry

BIT[XLEN-1:XLEN-1] - Pending
BIT[XLEN-2:XLEN-4] - Reserved and must be zero
BIT[XLEN-5:XLEN-8] - Type
BIT[XLEN-9:XLEN-9] - Reserved and must be zero
BIT[XLEN-10:XLEN-16] - Order
if XLEN == 32 then
 BIT[15:9] - VMID
 BIT[8:0] - ASID
else
 BIT[29:16] - VMID
 BIT[15:0] - ASID

The page size for invalidation must be
1 << (Config.Order + 12) bytes.

1 Page_Number Page address right shifted by Config.Order + 12

2 Reserved Reserved for future use and must be zero

3 Page_Count Number of pages to invalidate

Table 65. Nested HFENCE entry types

Type Name Description

0 GVMA Invalidate a guest physical address range across all
VMIDs. The VMID and ASID fields of the Config word are
ignored and MUST be zero.

1 GVMA_ALL Invalidate all guest physical addresses across all VMIDs.
The Order, VMID and ASID fields of the Config word are
ignored and MUST be zero. The Page_Number and
Page_Count words are ignored and MUST be zero.

2 GVMA_VMID Invalidate a guest physical address range for a
particular VMID. The ASID field of the Config word is
ignored and MUST be zero.

3 GVMA_VMID_ALL Invalidate all guest physical addresses for a particular
VMID. The Order and ASID fields of the Config word are
ignored and MUST be zero. The Page_Number and
Page_Count words are ignored and MUST be zero.

4 VVMA Invalidate a guest virtual address range for a particular
VMID. The ASID field of the Config word is ignored and
MUST be zero.

59

Type Name Description

5 VVMA_ALL Invalidate all guest virtual addresses for a particular
VMID. The Order and ASID fields of the Config word are
ignored and MUST be zero. The Page_Number and
Page_Count words are ignored and MUST be zero.

6 VVMA_ASID Invalidate a guest virtual address range for a particular
VMID and ASID.

7 VVMA_ASID_ALL Invalidate all guest virtual addresses for a particular
VMID and ASID. The Order field of the Config word is
ignored and MUST be zero. The Page_Number and
Page_Count words are ignored and MUST be zero.

> 7 Reserved Reserved for future use.

To add a nested HFENCE entry, the supervisor software (or L1 hypervisor) MUST do the following:

1. Find an unused nested HFENCE entry with Config.Pending == 0

2. Update the Page_Number and Page_Count words in the nested HFENCE entry

3. Update the Config word in the nested HFENCE entry such that Config.Pending bit is set

To synchronize a nested HFENCE entry, the SBI implementation (or L0 hypervisor) MUST do the
following:

1. If Config.Pending == 0 then do nothing and skip below steps

2. Process HFENCE based on details in the nested HFENCE entry

3. Clear the Config.Pending bit in the nested HFENCE entry

15.3. Feature: Synchronize SRET (ID #2)
The synchronize SRET feature describes the ability of the SBI implementation (or L0 hypervisor) to
do synchronization of CSRs and HFENCEs in the nested acceleration shared memory for the
supervisor software (or L1 hypervisor) along with SRET emulation.

This nested acceleration feature defines the scratch space offset range 0x0000 - 0x01FF (512 bytes)
as nested SRET context. The Table 66 below shows contents of the nested SRET context.

Table 66. Nested SRET context

Offset Name Encoding

0 * (XLEN / 8) Reserved Reserved for future use and must be zero

1 * (XLEN / 8) X1 Value to be restored in GPR X1

2 * (XLEN / 8) X2 Value to be restored in GPR X2

3 * (XLEN / 8) X3 Value to be restored in GPR X3

4 * (XLEN / 8) X4 Value to be restored in GPR X4

60

Offset Name Encoding

5 * (XLEN / 8) X5 Value to be restored in GPR X5

6 * (XLEN / 8) X6 Value to be restored in GPR X6

7 * (XLEN / 8) X7 Value to be restored in GPR X7

8 * (XLEN / 8) X8 Value to be restored in GPR X8

9 * (XLEN / 8) X9 Value to be restored in GPR X9

10 * (XLEN / 8) X10 Value to be restored in GPR X10

11 * (XLEN / 8) X11 Value to be restored in GPR X11

12 * (XLEN / 8) X12 Value to be restored in GPR X12

13 * (XLEN / 8) X13 Value to be restored in GPR X13

14 * (XLEN / 8) X14 Value to be restored in GPR X14

15 * (XLEN / 8) X15 Value to be restored in GPR X15

16 * (XLEN / 8) X16 Value to be restored in GPR X16

17 * (XLEN / 8) X17 Value to be restored in GPR X17

18 * (XLEN / 8) X18 Value to be restored in GPR X18

19 * (XLEN / 8) X19 Value to be restored in GPR X19

20 * (XLEN / 8) X20 Value to be restored in GPR X20

21 * (XLEN / 8) X21 Value to be restored in GPR X21

22 * (XLEN / 8) X22 Value to be restored in GPR X22

23 * (XLEN / 8) X23 Value to be restored in GPR X23

24 * (XLEN / 8) X24 Value to be restored in GPR X24

25 * (XLEN / 8) X25 Value to be restored in GPR X25

26 * (XLEN / 8) X26 Value to be restored in GPR X26

27 * (XLEN / 8) X27 Value to be restored in GPR X27

28 * (XLEN / 8) X28 Value to be restored in GPR X28

29 * (XLEN / 8) X29 Value to be restored in GPR X29

30 * (XLEN / 8) X30 Value to be restored in GPR X30

31 * (XLEN / 8) X31 Value to be restored in GPR X31

32 * (XLEN / 8) - 0x1FF Reserved Reserved for future use

Before sending a synchronize SRET request to the SBI implementation (or L0 hypervisor), the
supervisor software (or L1 hypervisor) MUST write the GPR X<i> values to be restored at offset <i>
* (XLEN / 8) of the nested SRET context.

Upon a synchronize SRET request from the supervisor software (or L1 hypervisor), the SBI
implementation (or L0 hypervisor) MUST do the following:

61

1. If SBI_NACL_FEAT_SYNC_CSR feature is available then

a. All RISC-V H-extension CSRs implemented by the SBI implementation (or L0 hypervisor) are
synchronized as described in the Section 15.1. This is equivalent to the SBI call
sbi_nacl_sync_csr(-1UL).

2. If SBI_NACL_FEAT_SYNC_HFENCE feature is available then

a. All nested HFENCE entries are synchronized as described in the Section 15.2. This is
equivalent to the SBI call sbi_nacl_sync_hfence(-1UL).

3. Restore GPR X<i> registers from the nested SRET context.

4. Emulate the SRET instruction as defined by the RISC-V Privilege specification [priv_v1.12].

15.4. Feature: Autoswap CSR (ID #3)
The autoswap CSR feature describes the ability of the SBI implementation (or L0 hypervisor) to
automatically swap certain RISC-V H-extension CSR values from the nested acceleration shared
memory in the following situations:

• Before emulating the SRET instruction for a synchronized SRET request from the supervisor
software (or L1 hypervisor).

• After supervisor (or L1) virtualization state changes from ON to OFF.

The supervisor software (or L1 hypervisor) should use the autoswap CSR feature in
conjunction with the synchronize SRET feature.

This nested acceleration feature defines the scratch space offset range 0x0200 - 0x027F (128 bytes)
as nested autoswap context. The Table 67 below shows contents of the nested autoswap context.

Table 67. Nested autoswap context

Offset Name Encoding

0 * (XLEN / 8) Autoswap_Flags Autoswap flags

BIT[XLEN-1:1] - Reserved for future use
and must be zero
BIT[0:0] - HSTATUS

1 * (XLEN / 8) HSTATUS Value to be swapped with HSTATUS CSR

2 * (XLEN / 8) - 0x7F Reserved Reserved for future use.

To enable automatic swapping of CSRs from the nested autoswap context, the supervisor software
(or L1 hypervisor) MUST do the following:

1. Write the HSTATUS swap value in the nested autoswap context.

2. Set Autoswap_Flags.HSTATUS bit in the nested autoswap context.

To swap CSRs from the nested autoswap context, the SBI implementation (or L0 hypervisor) MUST
do the following:

62

1. If Autoswap_Flags.HSTATUS bit is set in the nested autoswap context then swap the supervisor
HSTATUS CSR value with the HSTATUS value in the nested autoswap context.

15.5. Function: Probe nested acceleration feature (FID
#0)

struct sbiret sbi_nacl_probe_feature(uint32_t feature_id)

Probe a nested acceleration feature. This is a mandatory function of the SBI nested acceleration
extension. The feature_id parameter specifies the nested acceleration feature to probe. Table 61
provides a list of possible feature IDs.

This function always returns SBI_SUCCESS in sbiret.error. It returns 0 in sbiret.value if the given
feature_id is not available, or 1 in sbiret.value if it is available.

15.6. Function: Set nested acceleration shared memory
(FID #1)

struct sbiret sbi_nacl_set_shmem(unsigned long shmem_phys_lo,
 unsigned long shmem_phys_hi,
 unsigned long flags)

Set and enable the shared memory for nested acceleration on the calling hart. This is a mandatory
function of the SBI nested acceleration extension.

If both shmem_phys_lo and shmem_phys_hi parameters are not all-ones bitwise then shmem_phys_lo
specifies the lower XLEN bits and shmem_phys_hi specifies the upper XLEN bits of the shared
memory physical base address. shmem_phys_lo MUST be 4096 bytes (i.e. page) aligned and the size of
the shared memory must be 4096 + (XLEN * 128) bytes.

If both shmem_phys_lo and shmem_phys_hi parameters are all-ones bitwise then the nested
acceleration features are disabled.

The flags parameter is reserved for future use and must be zero.

The possible error codes returned in sbiret.error are shown in Table 68.

Table 68. NACL Set Shared Memory Errors

Error code Description

SBI_SUCCESS Shared memory was set or cleared successfully.

SBI_ERR_INVALID_PARAM The flags parameter is not zero or or the shmem_phys_lo
parameter is not 4096 bytes aligned.

63

Error code Description

SBI_ERR_INVALID_ADDRESS The shared memory pointed to by the shmem_phys_lo and
shmem_phys_hi parameters does not satisfy the requirements
described in Section 3.2.

15.7. Function: Synchronize shared memory CSRs (FID
#2)

struct sbiret sbi_nacl_sync_csr(unsigned long csr_num)

Synchronize CSRs in the nested acceleration shared memory. This is an optional function which is
only available if the SBI_NACL_FEAT_SYNC_CSR feature is available. The parameter csr_num
specifies the set of RISC-V H-extension CSRs to be synchronized.

If csr_num is all-ones bitwise then all RISC-V H-extension CSRs implemented by the SBI
implementation (or L0 hypervisor) are synchronized as described in the Section 15.1.

If (csr_num & 0x300) == 0x200 and csr_num < 0x1000 then only a single RISC-V H-extension CSR
specified by the csr_num parameter is synchronized as described in the Section 15.1.

The possible error codes returned in sbiret.error are shown in Table 69.

Table 69. NACL Synchronize CSR Errors

Error code Description

SBI_SUCCESS CSRs synchronized successfully.

SBI_ERR_NOT_SUPPORTED SBI_NACL_FEAT_SYNC_CSR feature is not available.

SBI_ERR_INVALID_PARAM csr_num is not all-ones bitwise and either:
* (csr_num & 0x300) != 0x200 or
* csr_num >= 0x1000 or
* csr_num is not implemented by the SBI implementation

SBI_ERR_NO_SHMEM Nested acceleration shared memory not available.

15.8. Function: Synchronize shared memory HFENCEs
(FID #3)

struct sbiret sbi_nacl_sync_hfence(unsigned long entry_index)

Synchronize HFENCEs in the nested acceleration shared memory. This is an optional function
which is only available if the SBI_NACL_FEAT_SYNC_HFENCE feature is available. The parameter
entry_index specifies the set of nested HFENCE entries to be synchronized.

If entry_index is all-ones bitwise then all nested HFENCE entries are synchronized as described in

64

the Section 15.2.

If entry_index < (3840 / XLEN) then only a single nested HFENCE entry specified by the entry_index
parameter is synchronized as described in the Section 15.2.

The possible error codes returned in sbiret.error are shown in Table 70.

Table 70. NACL Synchronize HFENCE Errors

Error code Description

SBI_SUCCESS HFENCEs synchronized successfully.

SBI_ERR_NOT_SUPPORTED SBI_NACL_FEAT_SYNC_HFENCE feature is not available.

SBI_ERR_INVALID_PARAM entry_index is not all-ones bitwise and
entry_index >= (3840 / XLEN).

SBI_ERR_NO_SHMEM Nested acceleration shared memory not available.

15.9. Function: Synchronize shared memory and
emulate SRET (FID #4)

struct sbiret sbi_nacl_sync_sret(void)

Synchronize CSRs and HFENCEs in the nested acceleration shared memory and emulate the SRET
instruction. This is an optional function which is only available if the SBI_NACL_FEAT_SYNC_SRET
feature is available.

This function is used by supervisor software (or L1 hypervisor) to do a synchronize SRET request
and the SBI implementation (or L0 hypervisor) MUST handle it as described in the Section 15.3.

This function does not return upon success and the possible error codes returned in sbiret.error
upon failure are shown in Table 71.

Table 71. NACL Synchronize SRET Errors

Error code Description

SBI_ERR_NOT_SUPPORTED SBI_NACL_FEAT_SYNC_SRET feature is not available.

SBI_ERR_NO_SHMEM Nested acceleration shared memory not available.

15.10. Function Listing
Table 72. NACL Function List

Function Name SBI Version FID EID

sbi_nacl_probe_feature 2.0 0 0x4E41434C

sbi_nacl_set_shmem 2.0 1 0x4E41434C

sbi_nacl_sync_csr 2.0 2 0x4E41434C

65

Function Name SBI Version FID EID

sbi_nacl_sync_hfence 2.0 3 0x4E41434C

sbi_nacl_sync_sret 2.0 4 0x4E41434C

66

Chapter 16. Steal-time Accounting Extension
(EID #0x535441 "STA")
SBI implementations may encounter situations where virtual harts are ready to run, but must be
withheld from running. These situations may be, for example, when multiple SBI domains share
processors or when an SBI implementation is a hypervisor and guest contexts share processors
with other guest contexts or host tasks. When virtual harts are at times withheld from running,
observers within the contexts of the virtual harts may need a way to account for less progress than
would otherwise be expected. The time a virtual hart was ready, but had to wait, is called "stolen
time" and the tracking of it is referred to as steal-time accounting. The Steal-time Accounting (STA)
extension defines the mechanism in which an SBI implementation provides steal-time and
preemption information, for each virtual hart, to supervisor-mode software.

16.1. Function: Set Steal-time Shared Memory Address
(FID #0)

struct sbiret sbi_steal_time_set_shmem(unsigned long shmem_phys_lo,
 unsigned long shmem_phys_hi,
 unsigned long flags)

Set the shared memory physical base address for steal-time accounting of the calling virtual hart
and enable the SBI implementation’s steal-time information reporting.

If shmem_phys_lo and shmem_phys_hi are not all-ones bitwise, then shmem_phys_lo specifies the lower
XLEN bits and shmem_phys_hi specifies the upper XLEN bits of the shared memory physical base
address. shmem_phys_lo MUST be 64-byte aligned. The size of the shared memory must be at least 64
bytes. The SBI implementation MUST zero the first 64 bytes of the shared memory before returning
from the SBI call.

If shmem_phys_lo and shmem_phys_hi are all-ones bitwise, the SBI implementation will stop reporting
steal-time information for the virtual hart.

The flags parameter is reserved for future use and MUST be zero.

It is not expected for the shared memory to be written by the supervisor-mode software while it is
in use for steal-time accounting. However, the SBI implementation MUST not misbehave if a write
from supervisor-mode software occurs, however, in that case, it MAY leave the shared memory
filled with inconsistent data.

The SBI implementation MUST stop writing to the shared memory when the supervisor-mode
software is not runnable, such as upon system reset or system suspend.

Not writing to the shared memory when the supervisor-mode software is not
runnable avoids unnecessary work and supports repeatable capture of a system
image while the supervisor-mode software is suspended.

67

The shared memory layout is defined in Table 73

Table 73. STA Shared Memory Structure

Name Offset Size Description

sequence 0 4 The SBI implementation MUST increment this
field to an odd value before writing the steal
field, and increment it again to an even value
after writing steal (i.e. an odd sequence
number indicates an in-progress update). The
SBI implementation SHOULD ensure that the
sequence field remains odd for only very short
periods of time.

The supervisor-mode software MUST check
this field before and after reading the steal
field, and repeat the read if it is different or
odd.

This sequence field enables the value of the steal
field to be read by supervisor-mode software
executing in a 32-bit environment.

flags 4 4 Always zero.

Future extensions of the SBI call might allow
the supervisor-mode software to write to some
of the fields of the shared memory. Such
extensions will not be enabled as long as a zero
value is used for the flags argument to the SBI
call.

steal 8 8 The amount of time in which this virtual hart
was not idle and scheduled out, in
nanoseconds. The time during which the
virtual hart is idle will not be reported as
steal-time.

68

Name Offset Size Description

preempted 16 1 An advisory flag indicating whether the
virtual hart which registered this structure is
running or not. A non-zero value MAY be
written by the SBI implementation if the
virtual hart has been preempted (i.e. while the
steal field is increasing), while a zero value
MUST be written before the virtual hart starts
to run again.

This preempted field can, for example, be used
by the supervisor-mode software to check if a
lock holder has been preempted, and, in that
case, disable optimistic spinning.

pad 17 47 Pad with zeros to a 64 byte boundary.

sbiret.value is set to zero and the possible error codes returned in sbiret.error are shown in Table
74 below.

Table 74. STA Set Steal-time Shared Memory Address Errors

Error code Description

SBI_SUCCESS The steal-time shared memory physical base address was set or
cleared successfully.

SBI_ERR_INVALID_PARAM The flags parameter is not zero or the shmem_phys_lo is not 64-
byte aligned.

SBI_ERR_INVALID_ADDRESS The shared memory pointed to by the shmem_phys_lo and
shmem_phys_hi parameters is not writable or does not satisfy other
requirements of Section 3.2.

SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

16.2. Function Listing
Table 75. STA Function List

Function Name SBI Version FID EID

sbi_steal_time_set_shmem 2.0 0 0x535441

69

Chapter 17. Experimental SBI Extension
Space (EIDs #0x08000000 - #0x08FFFFFF)
The SBI specification doesn’t define any rules for the EID management for experimental SBI
extensions.

70

Chapter 18. Vendor Specific Extension Space
(EIDs #0x09000000 - #0x09FFFFFF)
The lower 24 bits of vendor specific EID must match the lower 24 bits of the mvendorid value.

71

Chapter 19. Firmware Specific Extension
Space (EIDs #0x0A000000 - #0x0AFFFFFF)
The lower 24 bits of the firmware EID must match the lower 24 bits of the SBI implementation ID.
The firmware specific SBI extensions space is reserved for SBI implementations. It provides
firmware specific SBI functions which are defined in the external firmware specification.

72

References
▪ [priv_v1.12] The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document

Version 20211203, URL: github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12

73

https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12

	RISC-V Supervisor Binary Interface Specification
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Change Log
	Version 2.0
	Version 2.0-rc8
	Version 2.0-rc7
	Version 2.0-rc6
	Version 2.0-rc5
	Version 2.0-rc4
	Version 2.0-rc3
	Version 2.0-rc2
	Version 2.0-rc1
	Version 1.0.0
	Version 1.0-rc3
	Version 1.0-rc2
	Version 1.0-rc1
	Version 0.3.0
	Version 0.3-rc1
	Version 0.2

	Chapter 1. Introduction
	Chapter 2. Terms and Abbreviations
	Chapter 3. Binary Encoding
	3.1. Hart list parameter
	3.2. Shared memory physical address range parameter

	Chapter 4. Base Extension (EID #0x10)
	4.1. Function: Get SBI specification version (FID #0)
	4.2. Function: Get SBI implementation ID (FID #1)
	4.3. Function: Get SBI implementation version (FID #2)
	4.4. Function: Probe SBI extension (FID #3)
	4.5. Function: Get machine vendor ID (FID #4)
	4.6. Function: Get machine architecture ID (FID #5)
	4.7. Function: Get machine implementation ID (FID #6)
	4.8. Function Listing
	4.9. SBI Implementation IDs

	Chapter 5. Legacy Extensions (EIDs #0x00 - #0x0F)
	5.1. Extension: Set Timer (EID #0x00)
	5.2. Extension: Console Putchar (EID #0x01)
	5.3. Extension: Console Getchar (EID #0x02)
	5.4. Extension: Clear IPI (EID #0x03)
	5.5. Extension: Send IPI (EID #0x04)
	5.6. Extension: Remote FENCE.I (EID #0x05)
	5.7. Extension: Remote SFENCE.VMA (EID #0x06)
	5.8. Extension: Remote SFENCE.VMA with ASID (EID #0x07)
	5.9. Extension: System Shutdown (EID #0x08)
	5.10. Function Listing

	Chapter 6. Timer Extension (EID #0x54494D45 "TIME")
	6.1. Function: Set Timer (FID #0)
	6.2. Function Listing

	Chapter 7. IPI Extension (EID #0x735049 "sPI: s-mode IPI")
	7.1. Function: Send IPI (FID #0)
	7.2. Function Listing

	Chapter 8. RFENCE Extension (EID #0x52464E43 "RFNC")
	8.1. Function: Remote FENCE.I (FID #0)
	8.2. Function: Remote SFENCE.VMA (FID #1)
	8.3. Function: Remote SFENCE.VMA with ASID (FID #2)
	8.4. Function: Remote HFENCE.GVMA with VMID (FID #3)
	8.5. Function: Remote HFENCE.GVMA (FID #4)
	8.6. Function: Remote HFENCE.VVMA with ASID (FID #5)
	8.7. Function: Remote HFENCE.VVMA (FID #6)
	8.8. Function Listing

	Chapter 9. Hart State Management Extension (EID #0x48534D "HSM")
	9.1. Function: Hart start (FID #0)
	9.2. Function: Hart stop (FID #1)
	9.3. Function: Hart get status (FID #2)
	9.4. Function: Hart suspend (FID #3)
	9.5. Function Listing

	Chapter 10. System Reset Extension (EID #0x53525354 "SRST")
	10.1. Function: System reset (FID #0)
	10.2. Function Listing

	Chapter 11. Performance Monitoring Unit Extension (EID #0x504D55 "PMU")
	11.1. Event: Hardware general events (Type #0)
	11.2. Event: Hardware cache events (Type #1)
	11.3. Event: Hardware raw events (Type #2)
	11.4. Event: Firmware events (Type #15)
	11.5. Function: Get number of counters (FID #0)
	11.6. Function: Get details of a counter (FID #1)
	11.7. Function: Find and configure a matching counter (FID #2)
	11.8. Function: Start a set of counters (FID #3)
	11.9. Function: Stop a set of counters (FID #4)
	11.10. Function: Read a firmware counter (FID #5)
	11.11. Function: Read a firmware counter high bits (FID #6)
	11.12. Function: Set PMU snapshot shared memory (FID #7)
	11.13. Function Listing

	Chapter 12. Debug Console Extension (EID #0x4442434E "DBCN")
	12.1. Function: Console Write (FID #0)
	12.2. Function: Console Read (FID #1)
	12.3. Function: Console Write Byte (FID #2)
	12.4. Function Listing

	Chapter 13. System Suspend Extension (EID #0x53555350 "SUSP")
	13.1. Function: System Suspend (FID #0)
	13.2. Function Listing

	Chapter 14. CPPC Extension (EID #0x43505043 "CPPC")
	14.1. Function: Probe CPPC register (FID #0)
	14.2. Function: Read CPPC register (FID #1)
	14.3. Function: Read CPPC register high bits (FID #2)
	14.4. Function: Write to CPPC register (FID #3)
	14.5. Function Listing

	Chapter 15. Nested Acceleration Extension (EID #0x4E41434C "NACL")
	15.1. Feature: Synchronize CSR (ID #0)
	15.2. Feature: Synchronize HFENCE (ID #1)
	15.3. Feature: Synchronize SRET (ID #2)
	15.4. Feature: Autoswap CSR (ID #3)
	15.5. Function: Probe nested acceleration feature (FID #0)
	15.6. Function: Set nested acceleration shared memory (FID #1)
	15.7. Function: Synchronize shared memory CSRs (FID #2)
	15.8. Function: Synchronize shared memory HFENCEs (FID #3)
	15.9. Function: Synchronize shared memory and emulate SRET (FID #4)
	15.10. Function Listing

	Chapter 16. Steal-time Accounting Extension (EID #0x535441 "STA")
	16.1. Function: Set Steal-time Shared Memory Address (FID #0)
	16.2. Function Listing

	Chapter 17. Experimental SBI Extension Space (EIDs #0x08000000 - #0x08FFFFFF)
	Chapter 18. Vendor Specific Extension Space (EIDs #0x09000000 - #0x09FFFFFF)
	Chapter 19. Firmware Specific Extension Space (EIDs #0x0A000000 - #0x0AFFFFFF)
	References

