Prove eventual consistency for n clients
This commit is contained in:
parent
2747dd066d
commit
4058d17102
1 changed files with 20 additions and 2 deletions
20
csp/sync.csp
20
csp/sync.csp
|
@ -119,7 +119,7 @@ assert Sync(5) [FD= (SYSTEM [|{| up |}|] MaxInputs(5)) \diff(Events, union(produ
|
|||
-- 3 way sync: changes on 3 clients will sync to all
|
||||
-----------------------------------------
|
||||
|
||||
- Can we extend our previous result to 3 clients?
|
||||
-- Can we extend our previous result to 3 clients?
|
||||
|
||||
SyncThree(n) = |~| i:CLIENTS @ up!i!0 -> SyncThree'(n, n-1)
|
||||
SyncThree'(n, 0) =
|
||||
|
@ -133,3 +133,21 @@ SyncThree'(n, m) = |~| i:CLIENTS, t:TIMES @ up!i!t -> SyncThree'(n, m-1)
|
|||
|
||||
MaxInputSystem(n) = SYSTEM' [|{| up |}|] MaxInputs(n)
|
||||
assert SyncThree(5) [FD= MaxInputSystem(5) \diff(Events, union(productions(up), {render.i.5 | i <- CLIENTS}))
|
||||
|
||||
-----------------------------------------
|
||||
-- N way sync: changes on n clients will sync to all
|
||||
-----------------------------------------
|
||||
|
||||
sequences({}) = {<>}
|
||||
sequences(a) = {<z>^z' | z <- a, z' <- sequences(diff(a, {z}))}
|
||||
|
||||
renderAll(sequence, t) = ; i:sequence @ render!i.t -> SKIP
|
||||
|
||||
SyncAll(n) = |~| i:CLIENTS @ up!i!0 -> SyncThree'(n, n-1)
|
||||
SyncAll'(n, 0) = |~| renderSeq:sequences(CLIENTS) @ renderAll(renderSeq, n)
|
||||
SyncAll'(n, m) = |~| i:CLIENTS, t:TIMES @ up!i!t -> SyncAll'(n, m-1)
|
||||
|
||||
assert SyncAll(9) [FD= MaxInputSystem(9) \diff(Events, union(productions(up), {render.i.9 | i <- CLIENTS}))
|
||||
|
||||
-- This proves that given n clients, if we restrict them to x inputs total from any client in any order, eventually all n clients will render the same state i.e. they will be in sync.
|
||||
-- Note that this doesn't say anything about timing other except that eventually it will happen.
|
Loading…
Reference in a new issue