NUM_CLIENTS = 4 NUM_DB_STATES = 10 CLIENTS = {0..NUM_CLIENTS-1} TIMES = {0..NUM_DB_STATES-1} channel save:CLIENTS channel render:CLIENTS.TIMES channel up:CLIENTS.TIMES channel down:CLIENTS.TIMES channel saved:CLIENTS.TIMES channel report_queue:CLIENTS.TIMES next_t(t) = (t + 1) % NUM_DB_STATES CLIENT(i, t) = up!i!t -> CLIENT'(i, t) [] CLIENT'(i, t) CLIENT'(i, t) = down!i?server_t -> render!i!server_t -> CLIENT(i, server_t) SERVER(i, client_t) = up!i?server_t -> save!i -> saved!i?new_server_t -> down!i!new_server_t -> SERVER(i, new_server_t) [] report_queue?j:diff(CLIENTS,{i})?new_server_t -> if new_server_t == client_t then SERVER(i, client_t) else down!i!new_server_t -> SERVER(i, new_server_t) DB(t) = save?i -> saved!i!next_t(t) -> DB(next_t(t)) REPORTQUEUE(i) = saved?j:diff(CLIENTS,{i})?t -> REPORTQUEUE'(i, j, t) REPORTQUEUE'(i, j, t) = saved?j':diff(CLIENTS,{i})?new_t -> REPORTQUEUE'(i, j', new_t) [] report_queue!j!t -> REPORTQUEUE(i) SERVER_WITH_REPORTS(i, t0) = (SERVER(i, t0) [|{| report_queue |}|] REPORTQUEUE(i)) CONN(i, t0) = CLIENT(i, t0) [|{| up.i, down.i |}|] SERVER_WITH_REPORTS(i, t0) CONNS(t0) = [| productions(saved) |] i:CLIENTS @ CONN(i, t0) SYSTEM = DB(0) [|{| save, saved |}|] CONNS(0) ----------------------------------------- -- Assertions ----------------------------------------- assert SYSTEM :[deadlock free [F]] assert SYSTEM :[divergence-free] ----------------------------------------- -- One way sync: changes on one client will sync to other client ----------------------------------------- -- Suppose we limit our implementation to say that each -- user makes a finite number of changes n. MaxInputs(0) = SKIP MaxInputs(n) = up?i?t -> MaxInputs(n-1) -- Suppose we limit inputs to client 0. OnlyClient(i) = up!i?t -> OnlyClient(i) ClientZeroInput = OnlyClient(0) [|{| up |}|] SYSTEM OneInputFromClientZero = (OnlyClient(0) [|{| up |}|] MaxInputs(1)) [|{| up |}|] SYSTEM -- Now we show that a change on client 0 will make it to client 1. SyncOneInput = up.0.0 -> render.1.1 -> STOP assert SyncOneInput [FD= OneInputFromClientZero \diff(Events, union(productions(up.0), {render.1.1})) -- Expanding on this: what if we have two changes? We just care that, eventually, both of them get synced. SyncTwoInputs = up.0.0 -> up.0.1 -> render.1.2 -> STOP assert SyncTwoInputs [FD= (ClientZeroInput [|{| up |}|] MaxInputs(2)) \diff(Events, union(productions(up.0), {render.1.2})) -- Can we do this for an arbitrary n changes? OneWaySync(n) = up.0.0 -> OneWaySync'(n, n-1) OneWaySync'(n, 0) = render.1.n -> STOP OneWaySync'(n, i) = up.0.n-i -> OneWaySync'(n, i-1) OneSideInputs(n) = (ClientZeroInput [|{| up |}|] MaxInputs(n)) \diff(Events, union(productions(up.0), {render.1.n})) assert OneWaySync(1) [FD= OneSideInputs(1) assert OneWaySync(9) [FD= OneSideInputs(9) ----------------------------------------- -- Two way sync: changes on both clients will sync to both ----------------------------------------- -- Start simple. -- Let's just constrain our system to say, first client 0 does a change then client 1 does a change. AlternateInputs = up.0.0 -> up.1?t -> STOP -- Then our specification becomes simple. If client 0 inputs something then client one inputs something, at some point both should call render with the state after both changes hit the database (t=2). TwoWaySync = up.0.0 -> ((up.1.0 -> TwoWaySyncRender) |~| (up.1.1 -> TwoWaySyncRender)) TwoWaySyncRender = ((render.0.2 -> render.1.2 -> STOP) |~| (render.1.2 -> render.0.2 -> STOP)) assert TwoWaySync [FD= (SYSTEM [|{| up |}|] AlternateInputs) \diff(Events, union(union(productions(up.0), productions(up.1)), {render.0.2, render.1.2})) -- Let's extend this to an arbitrary number of inputs from either client (we don't care which). In the end we expect both to render the same DB state. -- This is basically the general specification for eventual consistency. We are saying that supposing n finite inputs -- from either client, eventually both of the clients get in sync and then stop. Sync(n) = (up.0.0 -> Sync'(n, n-1)) |~| (up.1.0 -> Sync'(n, n-1)) Sync'(n, 0) = (render.0.n -> render.1.n -> STOP) |~| (render.1.n -> render.0.n -> STOP) Sync'(n, m) = |~| i:CLIENTS, t:TIMES @ up!i!t -> Sync'(n, m-1) assert Sync(5) [FD= (SYSTEM [|{| up |}|] MaxInputs(5)) \diff(Events, union(productions(up), {render.0.5, render.1.5})) ----------------------------------------- -- 3 way sync: changes on 3 clients will sync to all ----------------------------------------- -- Can we extend our previous result to 3 clients? SyncThree(n) = |~| i:CLIENTS @ up!i!0 -> SyncThree'(n, n-1) SyncThree'(n, 0) = (render.0.n -> render.1.n -> render.2.n -> STOP) |~| (render.0.n -> render.2.n -> render.1.n -> STOP) |~| (render.1.n -> render.0.n -> render.2.n -> STOP) |~| (render.1.n -> render.2.n -> render.0.n -> STOP) |~| (render.2.n -> render.0.n -> render.1.n -> STOP) |~| (render.2.n -> render.1.n -> render.0.n -> STOP) SyncThree'(n, m) = |~| i:CLIENTS, t:TIMES @ up!i!t -> SyncThree'(n, m-1) MaxInputSystem(n) = SYSTEM [|{| up |}|] MaxInputs(n) assert SyncThree(5) [FD= MaxInputSystem(5) \diff(Events, union(productions(up), {render.i.5 | i <- CLIENTS})) ----------------------------------------- -- N way sync: changes on n clients will sync to all ----------------------------------------- sequences({}) = {<>} sequences(a) = {^z' | z <- a, z' <- sequences(diff(a, {z}))} renderAll(sequence, t) = ; i:sequence @ render!i.t -> SKIP SyncAll(n) = |~| i:CLIENTS @ up!i!0 -> SyncAll'(n, n-1) SyncAll'(n, 0) = |~| renderSeq:sequences(CLIENTS) @ renderAll(renderSeq, n); STOP SyncAll'(n, m) = |~| i:CLIENTS, t:TIMES @ up!i!t -> SyncAll'(n, m-1) -- Number of changes allowed: 1, 5, 9 assert SyncAll(1) [FD= MaxInputSystem(1) \diff(Events, union(productions(up), {render.i.1 | i <- CLIENTS})) assert SyncAll(5) [FD= MaxInputSystem(5) \diff(Events, union(productions(up), {render.i.5 | i <- CLIENTS})) assert SyncAll(9) [FD= MaxInputSystem(9) \diff(Events, union(productions(up), {render.i.9 | i <- CLIENTS})) -- This proves that given n clients, if we restrict them to x inputs total from any client in any order, eventually all n clients will render the same state i.e. they will be in sync. -- Note that this doesn't say anything about timing other except that eventually it will happen.