NUM_CLIENTS = 2 NUM_DB_STATES = 10 CLIENTS = {0..NUM_CLIENTS-1} TIMES = {0..NUM_DB_STATES-1} channel save:CLIENTS channel render:CLIENTS.TIMES channel up:CLIENTS.TIMES channel down:CLIENTS.TIMES.TIMES channel saved:CLIENTS.TIMES channel report_queue:CLIENTS.TIMES next_t(t) = (t + 1) % NUM_DB_STATES CLIENT(i, t) = up!i!t -> CLIENT'(i, t) [] CLIENT'(i, t) CLIENT'(i, t) = down!i?client_t?server_t -> render!i!server_t -> CLIENT(i, server_t) SERVER(i, client_t) = up!i?server_t -> save!i -> saved!i?new_server_t -> down!i!server_t!new_server_t -> SERVER(i, new_server_t) [] report_queue?j:diff(CLIENTS,{i})?new_server_t -> if new_server_t == client_t then SERVER(i, client_t) else down!i!client_t!new_server_t -> SERVER(i, new_server_t) REPORTQUEUE(i) = saved?j:diff(CLIENTS,{i})?t -> REPORTQUEUE'(i, j, t) REPORTQUEUE'(i, j, t) = saved?j':diff(CLIENTS,{i})?new_t -> REPORTQUEUE'(i, j', new_t) [] report_queue!j!t -> REPORTQUEUE(i) DB(t) = save?i -> saved!i!next_t(t) -> DB(next_t(t)) CONN(i, t0) = CLIENT(i, t0) [|{| up.i, down.i |}|] (SERVER(i, t0) [|{| report_queue |}|] REPORTQUEUE(i)) SYSTEM = (CONN(0,0) [|{| save.0, saved |}|] DB(0)) [|{| save.1, saved |}|] CONN(1,0) ----------------------------------------- -- Assertions ----------------------------------------- assert SYSTEM :[deadlock free [F]] assert SYSTEM :[divergence-free] ----------------------------------------- -- One way sync: changes on one client will sync to other client ----------------------------------------- -- Suppose we limit our specification to say that each -- user makes a finite number of changes n. MaxInputs(0) = STOP MaxInputs(n) = up?i?t -> MaxInputs(n-1) -- Suppose we limit inputs to client 0. OnlyClient(i) = up!i?t -> OnlyClient(i) ClientZeroInput = OnlyClient(0) [|{| up |}|] SYSTEM OneInputFromClientZero = (OnlyClient(0) [|{| up |}|] MaxInputs(1)) [|{| up |}|] SYSTEM -- Now we show that a change on client 0 will make it to client 1. SyncOneInput = up.0.0 -> render.1.1 -> STOP assert SyncOneInput [FD= OneInputFromClientZero \diff(Events, union(productions(up.0), {render.1.1})) -- Expanding on this: what if we have two changes? We just care that, eventually, both of them get synced. SyncTwoInputs = up.0.0 -> up.0.1 -> render.1.2 -> STOP assert SyncTwoInputs [FD= (ClientZeroInput [|{| up |}|] MaxInputs(2)) \diff(Events, union(productions(up.0), {render.1.2})) -- Can we do this for an arbitrary n changes? OneWaySync(n) = up.0.0 -> OneWaySync'(n, n-1) OneWaySync'(n, 0) = render.1.n -> STOP OneWaySync'(n, i) = up.0.n-i -> OneWaySync'(n, i-1) OneSideInputs(n) = (ClientZeroInput [|{| up |}|] MaxInputs(n)) \diff(Events, union(productions(up.0), {render.1.n})) assert OneWaySync(1) [FD= OneSideInputs(1) assert OneWaySync(9) [FD= OneSideInputs(9) ----------------------------------------- -- Two way sync: changes on both clients will sync to both ----------------------------------------- -- Start simple. -- Let's just constrain our system to say, first client 0 does a change then client 1 does a change. AlternateInputs = up.0.0 -> up.1?t -> STOP -- Then our specification becomes simple. If client 0 inputs something then client one inputs something, at some point both should call render with the state after both changes hit the database (t=2). TwoWaySync = up.0.0 -> ((up.1.0 -> TwoWaySyncRender) |~| (up.1.1 -> TwoWaySyncRender)) TwoWaySyncRender = ((render.0.2 -> render.1.2 -> STOP) |~| (render.1.2 -> render.0.2 -> STOP)) assert TwoWaySync [FD= (SYSTEM [|{| up |}|] AlternateInputs) \diff(Events, union(union(productions(up.0), productions(up.1)), {render.0.2, render.1.2}))