lean2/library/theories/move.lean

549 lines
21 KiB
Text
Raw Permalink Normal View History

/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Temporary file; move in Lean3.
-/
import data.set algebra.order_bigops algebra.ordered_field
import data.finset data.list.sort
import data.real
-- move this to init.function
section
open function
postfix `^~` :std.prec.max_plus := swap
end
-- move to algebra
theorem eq_of_inv_mul_eq_one {A : Type} {a b : A} [group A] (H : b⁻¹ * a = 1) : a = b :=
have a⁻¹ * 1 = a⁻¹, by inst_simp,
by inst_simp
theorem lt_neg_self_of_neg {A : Type} {a : A} [ordered_comm_group A] (Ha : a < 0) : a < -a :=
calc
a < 0 : Ha
... = -0 : by rewrite neg_zero
... < -a : neg_lt_neg Ha
theorem lt_of_add_lt_of_nonneg_left {A : Type} {a b c : A} [ordered_comm_group A]
(H : a + b < c) (Hb : b ≥ 0) : a < c :=
calc
a < c - b : lt_sub_right_of_add_lt H
... ≤ c : sub_le_self _ Hb
theorem lt_of_add_lt_of_nonneg_right {A : Type} {a b c : A} [ordered_comm_group A]
(H : a + b < c) (Hb : a ≥ 0) : b < c :=
calc
b < c - a : lt_sub_left_of_add_lt H
... ≤ c : sub_le_self _ Hb
theorem lt_mul_of_div_lt_of_pos {A : Type} {a b c : A} [linear_ordered_field A]
(Hc : c > 0) (H : a / c < b) : a < b * c :=
calc
a = a / c * c : !div_mul_cancel (ne.symm (ne_of_lt Hc))
... < b * c : mul_lt_mul_of_pos_right H Hc
theorem add_sub_self {A : Type} [add_comm_group A] (a b : A) : a + b - a = b :=
by rewrite [add_sub_assoc, add.comm, sub_add_cancel]
-- move to init.quotient
namespace quot
open classical
variables {A : Type} [s : setoid A]
protected theorem exists_eq_mk (x : quot s) : ∃ a : A, x = ⟦a⟧ :=
quot.induction_on x (take a, exists.intro _ rfl)
protected noncomputable definition repr (x : quot s) : A := some (quot.exists_eq_mk x)
protected theorem mk_repr_eq (x : quot s) : ⟦ quot.repr x ⟧ = x :=
eq.symm (some_spec (quot.exists_eq_mk x))
open setoid
include s
protected theorem repr_mk_equiv (a : A) : quot.repr ⟦a⟧ ≈ a :=
quot.exact (by rewrite quot.mk_repr_eq)
end quot
-- move to data.set.basic
-- move to algebra.ring
theorem mul_two {A : Type} [semiring A] (a : A) : a * 2 = a + a :=
by rewrite [-one_add_one_eq_two, left_distrib, +mul_one]
theorem two_mul {A : Type} [semiring A] (a : A) : 2 * a = a + a :=
by rewrite [-one_add_one_eq_two, right_distrib, +one_mul]
-- move to data.set
namespace set
open function
lemma inter_eq_self_of_subset {X : Type} {s t : set X} (Hst : s ⊆ t) : s ∩ t = s :=
ext (take x, iff.intro
(assume H, !inter_subset_left H)
(assume H, and.intro H (Hst H)))
lemma inter_eq_self_of_subset_right {X : Type} {s t : set X} (Hst : t ⊆ s) : s ∩ t = t :=
by rewrite [inter_comm]; apply inter_eq_self_of_subset Hst
proposition diff_self_inter {X : Type} (s t : set X) : s \ (s ∩ t) = s \ t :=
by rewrite [*diff_eq, compl_inter, inter_distrib_left, inter_compl_self, empty_union]
proposition diff_eq_diff {X : Type} {s t u : set X} (H : s ∩ u = s ∩ t) :
s \ u = s \ t :=
by rewrite [-diff_self_inter, H, diff_self_inter]
-- classical
proposition inter_eq_inter_of_diff_eq_diff {X : Type} {s t u : set X} (H : s \ u = s \ t) :
s ∩ u = s ∩ t :=
by rewrite [-compl_compl u, -compl_compl t]; apply diff_eq_diff H
proposition compl_inter_eq_compl_inter {X : Type} {s t u : set X}
(H : u ∩ s = t ∩ s) :
-u ∩ s = -t ∩ s :=
by rewrite [*inter_comm _ s]; apply diff_eq_diff; rewrite [*inter_comm s, H]
proposition inter_eq_inter_of_compl_inter_eq_compl_inter {X : Type} {s t u : set X}
(H : -u ∩ s = -t ∩ s) :
u ∩ s = t ∩ s :=
begin
rewrite [*inter_comm _ s], apply inter_eq_inter_of_diff_eq_diff,
rewrite [*diff_eq, *inter_comm s, H]
end
proposition singleton_subset_of_mem {X : Type} {x : X} {s : set X} (xs : x ∈ s) : '{x} ⊆ s :=
take y, assume yx,
have y = x, from eq_of_mem_singleton yx,
by rewrite this; exact xs
proposition mem_of_singleton_subset {X : Type} {x : X} {s : set X} (xs : '{x} ⊆ s) : x ∈ s :=
xs !mem_singleton
proposition singleton_subset_iff {X : Type} (x : X) (s : set X) : '{x} ⊆ s ↔ x ∈ s :=
iff.intro mem_of_singleton_subset singleton_subset_of_mem
theorem singleton_subset {X : Type} {a : X} {s : set X} (H : a ∈ s) : '{a} ⊆ s :=
take b, suppose b ∈ '{a},
have b = a, from eq_of_mem_singleton this,
show b ∈ s, by rewrite this; assumption
lemma inter_eq_inter_left {X : Type} {s t u : set X} (H₁ : s ∩ t ⊆ u) (H₂ : s ∩ u ⊆ t) :
s ∩ t = s ∩ u :=
eq_of_subset_of_subset
(subset_inter (inter_subset_left _ _) H₁)
(subset_inter (inter_subset_left _ _) H₂)
lemma inter_eq_inter_right {X : Type} {s t u : set X} (H₁ : s ∩ t ⊆ u) (H₂ : u ∩ t ⊆ s) :
s ∩ t = u ∩ t :=
eq_of_subset_of_subset
(subset_inter H₁ (inter_subset_right _ _))
(subset_inter H₂ (inter_subset_right _ _))
proposition sUnion_subset {X : Type} {S : set (set X)} {t : set X} (H : ∀₀ u ∈ S, u ⊆ t) :
⋃₀ S ⊆ t :=
take x, assume Hx,
obtain u [uS xu], from Hx,
H uS xu
proposition subset_of_sUnion_subset {X : Type} {S : set (set X)} {t : set X}
(H : ⋃₀ S ⊆ t) {u : set X} (Hu : u ∈ S) : u ⊆ t :=
λ x xu, H (exists.intro u (and.intro Hu xu))
proposition preimage_Union {I X Y : Type} (f : X → Y) (u : I → set Y) :
f '- ( i, u i) = i, (f '- (u i)) :=
ext (take x, !iff.refl)
-- TODO: rename "injective" to "inj"
-- TODO: turn around equality in definition of image
-- TODO: use ∀₀ in definition of injective (and define notation for ∀₀ x y ∈ s, ...)
attribute [trans] subset.trans -- really? this was never declared? And all the variants...
proposition mem_set_of_iff {X : Type} (P : X → Prop) (a : X) : a ∈ { x : X | P x } ↔ P a :=
iff.refl _
proposition mem_set_of {X : Type} {P : X → Prop} {a : X} (Pa : P a) : a ∈ { x : X | P x } := Pa
proposition of_mem_set_of {X : Type} {P : X → Prop} {a : X} (H : a ∈ { x : X | P x }) : P a := H
proposition forallb_of_forall {X : Type} {P : X → Prop} (s : set X) (H : ∀ x, P x) :
∀₀ x ∈ s, P x :=
λ x xs, H x
proposition forall_of_forallb_univ {X : Type} {P : X → Prop} (H : ∀₀ x ∈ univ, P x) : ∀ x, P x :=
λ x, H trivial
proposition forallb_univ_iff_forall {X : Type} (P : X → Prop) : (∀₀ x ∈ univ, P x) ↔ ∀ x, P x :=
iff.intro forall_of_forallb_univ !forallb_of_forall
proposition forallb_of_subset {X : Type} {s t : set X} {P : X → Prop}
(ssubt : s ⊆ t) (Ht : ∀₀ x ∈ t, P x) : ∀₀ x ∈ s, P x :=
λ x xs, Ht (ssubt xs)
proposition forallb_of_forall₂ {X Y : Type} {P : X → Y → Prop} (s : set X) (t : set Y)
(H : ∀ x y, P x y) : ∀₀ x ∈ s, ∀₀ y ∈ t, P x y :=
λ x xs y yt, H x y
proposition forall_of_forallb_univ₂ {X Y : Type} {P : X → Y → Prop}
(H : ∀₀ x ∈ univ, ∀₀ y ∈ univ, P x y) : ∀ x y, P x y :=
λ x y, H trivial trivial
proposition forallb_univ_iff_forall₂ {X Y : Type} (P : X → Y → Prop) :
(∀₀ x ∈ univ, ∀₀ y ∈ univ, P x y) ↔ ∀ x y, P x y :=
iff.intro forall_of_forallb_univ₂ !forallb_of_forall₂
proposition forallb_of_subset₂ {X Y : Type} {s₁ t₁ : set X} {s₂ t₂ : set Y} {P : X → Y → Prop}
(ssubt₁ : s₁ ⊆ t₁) (ssubt₂ : s₂ ⊆ t₂) (Ht : ∀₀ x ∈ t₁, ∀₀ y ∈ t₂, P x y) :
∀₀ x ∈ s₁, ∀₀ y ∈ s₂, P x y :=
λ x xs y ys, Ht (ssubt₁ xs) (ssubt₂ ys)
theorem maps_to_univ {X Y : Type} (f : X → Y) (a : set X) : maps_to f a univ :=
take x, assume H, trivial
theorem surj_on_image {X Y : Type} (f : X → Y) (a : set X) : surj_on f a (f ' a) :=
λ y Hy, Hy
theorem image_eq_univ_of_surjective {X Y : Type} {f : X → Y} (H : surjective f) :
f ' univ = univ :=
ext (take y, iff.intro (λ H', trivial)
(λ H', obtain x xeq, from H y,
show y ∈ f ' univ, from mem_image trivial xeq))
proposition image_inter_subset {X Y : Type} (f : X → Y) (s t : set X) :
f ' (s ∩ t) ⊆ f ' s ∩ f ' t :=
take y, assume ymem,
obtain x [[xs xt] (xeq : f x = y)], from ymem,
show y ∈ f ' s ∩ f ' t,
begin
rewrite -xeq,
exact (and.intro (mem_image_of_mem f xs) (mem_image_of_mem f xt))
end
--proposition image_eq_of_maps_to_of_surj_on {X Y : Type} {f : X → Y} {s : set X} {t : set Y}
-- (H : maps_to f s t) (H' : surj_on f s t) :
-- f ' s = t :=
--eq_of_subset_of_subset (image_subset_of_maps_to H) H'
proposition surj_on_of_image_eq {X Y : Type} {f : X → Y} {s : set X} {t : set Y}
(H : f ' s = t) :
surj_on f s t :=
by rewrite [↑surj_on, H]; apply subset.refl
proposition surjective_induction {X Y : Type} {P : Y → Prop} {f : X → Y}
(surjf : surjective f) (H : ∀ x, P (f x)) :
∀ y, P y :=
take y,
obtain x (yeq : f x = y), from surjf y,
show P y, by rewrite -yeq; apply H x
proposition surjective_induction₂ {X Y : Type} {P : Y → Y → Prop} {f : X → Y}
(surjf : surjective f) (H : ∀ x₁ x₂, P (f x₁) (f x₂)) :
∀ y₁ y₂, P y₁ y₂ :=
take y₁ y₂,
obtain x₁ (y₁eq : f x₁ = y₁), from surjf y₁,
obtain x₂ (y₂eq : f x₂ = y₂), from surjf y₂,
show P y₁ y₂, by rewrite [-y₁eq, -y₂eq]; apply H x₁ x₂
proposition surj_on_univ_induction {X Y : Type} {P : Y → Prop} {f : X → Y} {s : set X}
(surjfs : surj_on f s univ) (H : ∀₀ x ∈ s, P (f x)) :
∀ y, P y :=
take y,
obtain x [xs (yeq : f x = y)], from surjfs trivial,
show P y, by rewrite -yeq; apply H xs
proposition surj_on_univ_induction₂ {X Y : Type} {P : Y → Y → Prop} {f : X → Y} {s : set X}
(surjfs : surj_on f s univ) (H : ∀₀ x₁ ∈ s, ∀₀ x₂ ∈ s, P (f x₁) (f x₂)) :
∀ y₁ y₂, P y₁ y₂ :=
take y₁ y₂,
obtain x₁ [x₁s (y₁eq : f x₁ = y₁)], from surjfs trivial,
obtain x₂ [x₂s (y₂eq : f x₂ = y₂)], from surjfs trivial,
show P y₁ y₂, by rewrite [-y₁eq, -y₂eq]; apply H x₁s x₂s
proposition surj_on_univ_of_surjective {X Y : Type} {f : X → Y} (s : set Y) (H : surjective f) :
surj_on f univ s :=
take y, assume ys,
obtain x yeq, from H y,
mem_image !mem_univ yeq
proposition mem_of_mem_image_of_injective {X Y : Type} {f : X → Y} {s : set X} {a : X}
(injf : injective f) (H : f a ∈ f ' s) :
a ∈ s :=
obtain b [bs faeq], from H,
have b = a, from injf faeq,
by rewrite -this; apply bs
proposition mem_of_mem_image_of_inj_on {X Y : Type} {f : X → Y} {s t : set X} {a : X} (Ha : a ∈ t)
(Hs : s ⊆ t) (injft : inj_on f t) (H : f a ∈ f ' s) :
a ∈ s :=
obtain b [bs faeq], from H,
have b = a, from injft (Hs bs) Ha faeq,
by rewrite -this; apply bs
proposition eq_singleton_of_forall_eq {A : Type} {s : set A} {x : A} (xs : x ∈ s) (H : ∀₀ y ∈ s, y = x) :
s = '{x} :=
ext (take y, iff.intro
(assume ys, mem_singleton_of_eq (H ys))
(assume yx, by rewrite (eq_of_mem_singleton yx); assumption))
proposition insert_subset {A : Type} {s t : set A} {a : A} (amem : a ∈ t) (ssubt : s ⊆ t) : insert a s ⊆ t :=
take x, assume xias,
or.elim (eq_or_mem_of_mem_insert xias)
(by simp)
(take H, ssubt H)
-- move to data.set.finite
lemma finite_sUnion {A : Type} {S : set (set A)} [H : finite S] :
(∀s, s ∈ S → finite s) → finite ₀S :=
induction_on_finite S
(by intro H; rewrite sUnion_empty; apply finite_empty)
(take a s, assume fins anins ih h,
begin
rewrite sUnion_insert,
apply finite_union,
{apply h _ (mem_insert a s)},
apply ih (forall_of_forall_insert h)
end)
lemma subset_powerset_sUnion {A : Type} (S : set (set A)) : S ⊆ 𝒫 (⋃₀ S) :=
take u, suppose u ∈ S, show u ⊆ ⋃₀ S, from subset_sUnion_of_mem this
lemma finite_of_finite_sUnion {A : Type} (S : set (set A)) (H : finite ₀S) : finite S :=
have finite (𝒫 (⋃₀ S)), from finite_powerset _,
show finite S, from finite_subset (subset_powerset_sUnion S)
section nat
open nat
proposition ne_empty_of_card_pos {A : Type} {s : set A} (H : card s > 0) : s ≠ ∅ :=
take H', begin rewrite [H' at H, card_empty at H], exact lt.irrefl 0 H end
lemma eq_of_card_eq_one {A : Type} {S : set A} (H : card S = 1) {x y : A} (Hx : x ∈ S) (Hy : y ∈ S) :
x = y :=
have finite S,
from classical.by_contradiction
(assume nfinS, begin rewrite (card_of_not_finite nfinS) at H, contradiction end),
classical.by_contradiction
(assume H0 : x ≠ y,
have H1 : '{x, y} ⊆ S, from insert_subset Hx (insert_subset Hy (empty_subset _)),
have x ∉ '{y}, from assume H, H0 (eq_of_mem_singleton H),
have 2 ≤ 1, from calc
2 = card '{x, y} : by rewrite [card_insert_of_not_mem this,
card_insert_of_not_mem (not_mem_empty _), card_empty]
... ≤ card S : card_le_card_of_subset H1
... = 1 : H,
show false, from dec_trivial this)
proposition eq_singleton_of_card_eq_one {A : Type} {s : set A} {x : A} (H : card s = 1) (xs : x ∈ s) :
s = '{x} :=
eq_singleton_of_forall_eq xs (take y, assume ys, eq.symm (eq_of_card_eq_one H xs ys))
proposition exists_eq_singleton_of_card_eq_one {A : Type} {s : set A} (H : card s = 1) : ∃ x, s = '{x} :=
have s ≠ ∅, from ne_empty_of_card_pos (by rewrite H; apply dec_trivial),
obtain (x : A) (xs : x ∈ s), from exists_mem_of_ne_empty this,
exists.intro x (eq_singleton_of_card_eq_one H xs)
end nat
-- move to data.set.classical_inverse (and rename file to "inverse")
theorem inv_fun_spec {X Y : Type} {f : X → Y} {a : set X} {dflt : X} {x : X} (xa : x ∈ a) :
f (inv_fun f a dflt (f x)) = f x :=
and.right (inv_fun_pos (exists.intro x (and.intro xa rfl)))
theorem inv_fun_spec' {X Y : Type} {f : X → Y} {a : set X} {dflt : X} {x : X} (xa : x ∈ a) :
inv_fun f a dflt (f x) ∈ a :=
and.left (inv_fun_pos (exists.intro x (and.intro xa rfl)))
-- TODO: move to data.set.filter
namespace filter
protected theorem le_iff {X : Type} (F₁ F₂ : filter X) : F₁ ≤ F₂ ↔ F₂ ⊆ F₁ := iff.refl _
-- TODO: change names of fields in filter
-- TODO: reorder hypotheses in eventually_of_le, and change "le" to "ge"
-- TODO: fix eventually_inf: implicit argument, and use implication
-- TODO: set: add spaces around ∀₀ x ∈ s and ∃₀ x ∈ s
theorem eventually_inf_left {X : Type} {P : X → Prop} {F₁ : filter X} (F₂ : filter X)
(H : eventually P F₁) : eventually P (inf F₁ F₂) :=
eventually_of_le H !inf_le_left
theorem eventually_inf_right {X : Type} {P : X → Prop} (F₁ : filter X) {F₂ : filter X}
(H : eventually P F₂) : eventually P (inf F₁ F₂) :=
eventually_of_le H !inf_le_right
theorem eventually_Inf {X : Type} {P : X → Prop} {S : set (filter X)} {F : filter X} (FS : F ∈ S)
(H : eventually P F) : eventually P (Inf S) :=
eventually_of_le H (Inf_le FS)
-- TODO: replace definition of Inf with this
definition Inf' {X : Type} (S : set (filter X)) : filter X :=
⦃ filter,
sets := { s | ∃ T : set (set X), finite T ∧ T ⊆ ( F ∈ S, sets F) ∧ ⋂₀ T ⊆ s},
univ_mem_sets := abstract
have H : (⋂₀ ∅) ⊆ @univ X, by rewrite sInter_empty; apply subset.refl,
exists.intro ∅ (and.intro !finite_empty (and.intro (empty_subset _) H))
end,
inter_closed := abstract
take s t, assume Hs Ht,
obtain Ts finTs Tssub ITs, from Hs,
obtain Tt finTt Ttsub ITt, from Ht,
have H1 : finite (Ts Tt), proof finite_union Ts Tt qed,
have H2 : Ts Tt ⊆ ( F ∈ S, sets F), from union_subset Tssub Ttsub,
have H3 : ⋂₀ (Ts Tt) ⊆ s ∩ t,
begin
rewrite sInter_union, apply subset_inter,
{exact subset.trans (inter_subset_left _ _) ITs},
exact subset.trans (inter_subset_right _ _) ITt
end,
exists.intro _ (and.intro H1 (and.intro H2 H3))
end,
is_mono := abstract
take s t ssubt Hs,
obtain T finT Tsub IT, from Hs,
exists.intro T (and.intro finT (and.intro Tsub (subset.trans IT ssubt)))
end
theorem sets_Inf' {A : Type} (S : set (filter A)) :
sets (Inf' S) = { s | ∃ T : set (set A), finite T ∧ T ⊆ ( F ∈ S, sets F) ∧ ⋂₀ T ⊆ s} :=
rfl
theorem sInter_mem_of_finite {A : Type} {F : filter A} {T : set (set A)} (finT : finite T)
(Tsub : T ⊆ sets F) : ⋂₀ T ∈ sets F :=
begin
induction finT with a T finT aninT ih,
{rewrite sInter_empty, apply filter.univ_mem_sets},
rewrite sInter_insert, apply filter.inter_closed,
show a ∈ sets F, from Tsub (mem_insert a T),
show ⋂₀ T ∈ sets F, from ih (subset.trans (subset_insert _ _) Tsub)
end
theorem le_Inf' {A : Type} {F : filter A} {S : set (filter A)} (H : ∀₀ G ∈ S, F ≤ G) :
F ≤ Inf' S :=
filter.le_of_subset
(take s, suppose s ∈ sets (Inf' S),
obtain (T : set (set A)) finT (Tsub : T ⊆ ( G ∈ S, sets G)) (IT : ⋂₀ T ⊆ s), from this,
have T ⊆ sets F, from subset.trans Tsub (bUnion_subset H),
have ⋂₀ T ∈ sets F, from sInter_mem_of_finite finT this,
show s ∈ sets F, from filter.is_mono _ IT this)
theorem Inf'_le {A : Type} {F : filter A} {S : set (filter A)} (FS : F ∈ S) :
Inf' S ≤ F :=
filter.le_of_subset
(take s, suppose s ∈ sets F,
have '{s} ⊆ G ∈ S, sets G, from singleton_subset (mem_bUnion FS this),
exists.intro '{s} (and.intro _
(and.intro this (by rewrite sInter_singleton; apply subset.refl))))
theorem Inf_eq_Inf' {A : Type} (S : set (filter A)) : Inf S = Inf' S :=
le.antisymm (le_Inf' (λ F FS, Inf_le FS)) (le_Inf (λ F FS, Inf'_le FS))
theorem exists_eventually_of_eventually_Inf {A : Type} {P : A → Prop} {F : filter A}
{S : set (filter A)} (FS : F ∈ S) (H' : eventually P (Inf S))
(H : ∀₀ F₁ ∈ S, ∀₀ F₂ ∈ S, ∃₀ F ∈ S, F ≤ inf F₁ F₂) :
∃₀ F ∈ S, eventually P F :=
have P ∈ Inf' S, by rewrite -Inf_eq_Inf'; apply H',
have ∃ T : set (set A), finite T ∧ T ⊆ ( F ∈ S, sets F) ∧ ⋂₀ T ⊆ P,
by rewrite sets_Inf' at this; exact this,
obtain T finT Tsub ITP, from this,
have ∃₀ F ∈ S, ⋂₀ T ∈ F,
begin
clear ITP,
induction finT with s T finT sninT ih,
{exact exists.intro F (and.intro FS (by rewrite sInter_empty; apply filter.univ_mem_sets))},
have ∃₀ F ∈ S, ⋂₀ T ∈ F, from ih (subset.trans (subset_insert _ _) Tsub),
cases this with F₁ H₁,
cases H₁ with F₁S ITF₁,
have s ∈ ( F ∈ S, sets F), from Tsub !mem_insert,
cases this with F₂ H₂,
cases H₂ with F₂S sF₂,
cases H F₁S F₂S with F' HF',
cases HF' with F'S F'le,
existsi F', split, exact F'S,
show ⋂₀ insert s T ∈ sets F',
begin
rewrite sInter_insert, apply filter.inter_closed,
show s ∈ sets F', from filter.subset_of_le (le.trans F'le !inf_le_right) sF₂,
show ⋂₀ T ∈ sets F', from filter.subset_of_le (le.trans F'le !inf_le_left) ITF₁,
end
end,
obtain F FS IT, from this,
exists.intro F (and.intro FS (filter.is_mono _ ITP IT))
end filter
end set
-- move to data.finset
namespace finset
section
variables {A : Type} [decidable_linear_order A]
definition finset_to_list (s : finset A) : list A :=
quot.lift_on s
(take l, list.sort le (subtype.elt_of l))
(take a b, assume eqab, list.sort_eq_of_perm eqab)
proposition to_finset_finset_to_list (s : finset A) : to_finset (finset_to_list s) = s :=
quot.induction_on s
begin
intro l,
have H : list.nodup (list.sort le (subtype.elt_of l)),
from perm.nodup_of_perm_of_nodup (perm.symm !list.sort_perm) (subtype.has_property l),
rewrite [↑finset_to_list, -to_finset_eq_of_nodup H],
apply quot.sound,
apply list.sort_perm
end
proposition nodup_finset_to_list (s : finset A) : list.nodup (finset_to_list s) :=
quot.induction_on s
(take l, perm.nodup_of_perm_of_nodup (perm.symm !list.sort_perm) (subtype.has_property l))
proposition sorted_finset_to_list (s : finset A) : list.sorted le (finset_to_list s) :=
quot.induction_on s
(take l, list.sorted_of_strongly_sorted (list.strongly_sorted_sort _))
end
end finset
-- move to data.nat?
namespace nat
open finset
theorem succ_Max₀_not_mem (s : finset ) : succ (Max₀ s) ∉ s :=
suppose succ (Max₀ s) ∈ s,
have succ (Max₀ s) ≤ Max₀ s, from le_Max₀ this,
show false, from not_succ_le_self this
end nat
-- move to real
namespace real
theorem lt_of_abs_lt {a b : } (Ha : abs a < b) : a < b :=
if Hnn : a ≥ 0 then
by rewrite [-abs_of_nonneg Hnn]; exact Ha
else
have Hlt : a < 0, from lt_of_not_ge Hnn,
have -a < b, by rewrite [-abs_of_neg Hlt]; exact Ha,
calc
a < -a : lt_neg_self_of_neg Hlt
... < b : this
end real