2015-05-27 23:32:43 +00:00
|
|
|
import data.nat
|
|
|
|
open nat
|
|
|
|
|
|
|
|
example (a b : nat) (f : nat → nat) (h : f (succ a) = 0) : f (a+1) = 0 :=
|
|
|
|
by rewrite [add_one, h]
|
|
|
|
|
|
|
|
example (a b : nat) (f : nat → nat) (h : f (succ a) = 0) : f (a+1) = 0 :=
|
2015-10-13 22:39:03 +00:00
|
|
|
by krewrite h
|
2015-05-27 23:32:43 +00:00
|
|
|
|
|
|
|
definition g (a : nat) := a + 1
|
|
|
|
definition h (a : nat) := a
|
|
|
|
|
|
|
|
example (a b : nat) (f : nat → nat) (h : f (g (h a)) = 0) : f (a+1) = 0 :=
|
|
|
|
by krewrite h
|