2015-01-05 04:49:53 +00:00
|
|
|
open nat
|
|
|
|
|
2015-02-26 00:20:44 +00:00
|
|
|
theorem lt_trans : ∀ {a b c : nat}, a < b → b < c → a < c
|
|
|
|
| lt_trans h (lt.base _) := lt.step h
|
|
|
|
| lt_trans h₁ (lt.step h₂) := lt.step (lt_trans h₁ h₂)
|
2015-01-05 04:49:53 +00:00
|
|
|
|
2015-02-26 00:20:44 +00:00
|
|
|
theorem lt_succ : ∀ {a b : nat}, a < b → succ a < succ b
|
|
|
|
| lt_succ (lt.base a) := lt.base (succ a)
|
|
|
|
| lt_succ (lt.step h) := lt.step (lt_succ h)
|