lean2/tests/lean/run/local_eqns.lean

69 lines
1.5 KiB
Text
Raw Permalink Normal View History

import data.nat logic
open bool nat
check
show nat → bool
| 0 := tt
| (n+1) := ff
definition mult : nat → nat → nat :=
have plus : nat → nat → nat
| 0 b := b
| (succ a) b := succ (plus a b),
have mult : nat → nat → nat
| 0 b := 0
| (succ a) b := plus (mult a b) b,
mult
print definition mult
example : mult 3 7 = 21 := rfl
example : mult 8 7 = 56 := rfl
theorem add_eq_addl : ∀ x y, x + y = x ⊕ y
| 0 0 := rfl
| (succ x) 0 :=
begin
have addl_z : ∀ a : nat, a ⊕ 0 = a
| 0 := rfl
| (succ a) := calc
(succ a) ⊕ 0 = succ (a ⊕ 0) : rfl
... = succ a : addl_z,
rewrite addl_z
end
| 0 (succ y) :=
begin
have z_add : ∀ a : nat, 0 + a = a
| 0 := rfl
| (succ a) :=
begin
rewrite ▸ succ(0 + a) = _,
rewrite z_add
end,
rewrite z_add
end
| (succ x) (succ y) :=
begin
change (succ x + succ y = succ (x ⊕ succ y)),
have s_add : ∀ a b : nat, succ a + b = succ (a + b)
| 0 0 := rfl
| (succ a) 0 := rfl
| 0 (succ b) :=
begin
change (succ (succ 0 + b) = succ (succ (0 + b))),
rewrite -(s_add 0 b)
end
| (succ a) (succ b) :=
begin
change (succ (succ (succ a) + b) = succ (succ (succ a + b))),
apply (congr_arg succ),
rewrite (s_add (succ a) b),
end,
rewrite [s_add, add_eq_addl]
end
reveal add_eq_addl
print definition add_eq_addl