2014-11-12 23:11:08 +00:00
|
|
|
import data.nat.basic data.bool
|
|
|
|
open bool nat eq.ops
|
2015-01-25 04:23:21 +00:00
|
|
|
attribute nat.rec_on [reducible]
|
2014-11-12 23:11:08 +00:00
|
|
|
|
|
|
|
definition is_eq (a b : nat) : bool :=
|
|
|
|
nat.rec_on a
|
|
|
|
(λ b, nat.cases_on b tt (λb₁, ff))
|
|
|
|
(λ a₁ r₁ b, nat.cases_on b ff (λb₁, r₁ b₁))
|
|
|
|
b
|
|
|
|
|
|
|
|
example : is_eq 3 3 = tt :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
example : is_eq 3 5 = ff :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem eq.to_is_eq (a b : nat) (H : a = b) : is_eq a b = tt :=
|
|
|
|
have aux : is_eq a a = tt, from
|
|
|
|
nat.induction_on a
|
|
|
|
rfl
|
|
|
|
(λ (a₁ : nat) (ih : is_eq a₁ a₁ = tt), ih),
|
|
|
|
H ▸ aux
|
|
|
|
|
|
|
|
theorem is_eq.to_eq (a b : nat) : is_eq a b = tt → a = b :=
|
|
|
|
nat.induction_on a
|
|
|
|
(λb, nat.cases_on b (λh, rfl) (λb₁ H, absurd H !ff_ne_tt))
|
|
|
|
(λa₁ (ih : ∀b, is_eq a₁ b = tt → a₁ = b) (b : nat),
|
|
|
|
nat.cases_on b
|
|
|
|
(λ (H : is_eq (succ a₁) zero = tt), absurd H !ff_ne_tt)
|
|
|
|
(λb₁ (H : is_eq (succ a₁) (succ b₁) = tt),
|
|
|
|
have aux : a₁ = b₁, from ih b₁ H,
|
|
|
|
aux ▸ rfl))
|
|
|
|
b
|