60 lines
1.8 KiB
Text
60 lines
1.8 KiB
Text
|
/-
|
|||
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
|
|||
|
Module: logic.axioms.classical
|
|||
|
Author: Leonardo de Moura
|
|||
|
-/
|
|||
|
|
|||
|
import logic.connectives logic.quantifiers logic.cast algebra.relation
|
|||
|
|
|||
|
open eq.ops
|
|||
|
|
|||
|
axiom prop_complete (a : Prop) : a = true ∨ a = false
|
|||
|
|
|||
|
definition eq_true_or_eq_false := prop_complete
|
|||
|
|
|||
|
theorem cases (P : Prop → Prop) (H1 : P true) (H2 : P false) (a : Prop) : P a :=
|
|||
|
or.elim (prop_complete a)
|
|||
|
(assume Ht : a = true, Ht⁻¹ ▸ H1)
|
|||
|
(assume Hf : a = false, Hf⁻¹ ▸ H2)
|
|||
|
|
|||
|
theorem cases_on (a : Prop) {P : Prop → Prop} (H1 : P true) (H2 : P false) : P a :=
|
|||
|
cases P H1 H2 a
|
|||
|
|
|||
|
-- this supercedes the em in decidable
|
|||
|
theorem em (a : Prop) : a ∨ ¬a :=
|
|||
|
or.elim (prop_complete a)
|
|||
|
(assume Ht : a = true, or.inl (of_eq_true Ht))
|
|||
|
(assume Hf : a = false, or.inr (not_of_eq_false Hf))
|
|||
|
|
|||
|
theorem eq_false_or_eq_true (a : Prop) : a = false ∨ a = true :=
|
|||
|
cases (λ x, x = false ∨ x = true)
|
|||
|
(or.inr rfl)
|
|||
|
(or.inl rfl)
|
|||
|
a
|
|||
|
|
|||
|
theorem propext {a b : Prop} (Hab : a → b) (Hba : b → a) : a = b :=
|
|||
|
or.elim (prop_complete a)
|
|||
|
(assume Hat, or.elim (prop_complete b)
|
|||
|
(assume Hbt, Hat ⬝ Hbt⁻¹)
|
|||
|
(assume Hbf, false.elim (Hbf ▸ (Hab (of_eq_true Hat)))))
|
|||
|
(assume Haf, or.elim (prop_complete b)
|
|||
|
(assume Hbt, false.elim (Haf ▸ (Hba (of_eq_true Hbt))))
|
|||
|
(assume Hbf, Haf ⬝ Hbf⁻¹))
|
|||
|
|
|||
|
theorem eq.of_iff {a b : Prop} (H : a ↔ b) : a = b :=
|
|||
|
iff.elim (assume H1 H2, propext H1 H2) H
|
|||
|
|
|||
|
theorem iff_eq_eq {a b : Prop} : (a ↔ b) = (a = b) :=
|
|||
|
propext
|
|||
|
(assume H, eq.of_iff H)
|
|||
|
(assume H, iff.of_eq H)
|
|||
|
|
|||
|
open relation
|
|||
|
theorem iff_congruence [instance] (P : Prop → Prop) : is_congruence iff iff P :=
|
|||
|
is_congruence.mk
|
|||
|
(take (a b : Prop),
|
|||
|
assume H : a ↔ b,
|
|||
|
show P a ↔ P b, from iff.of_eq (eq.of_iff H ▸ eq.refl (P a)))
|