lean2/hott/hit/susp.hlean

230 lines
7.4 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of suspension
-/
import .pushout types.pointed types.cubical.square
open pushout unit eq equiv equiv.ops
definition susp (A : Type) : Type := pushout (λ(a : A), star) (λ(a : A), star)
namespace susp
variable {A : Type}
definition north {A : Type} : susp A :=
inl _ _ star
definition south {A : Type} : susp A :=
inr _ _ star
definition merid (a : A) : @north A = @south A :=
glue _ _ a
protected definition rec {P : susp A → Type} (PN : P north) (PS : P south)
(Pm : Π(a : A), PN =[merid a] PS) (x : susp A) : P x :=
begin
induction x with u u,
{ cases u, exact PN},
{ cases u, exact PS},
{ apply Pm},
end
protected definition rec_on [reducible] {P : susp A → Type} (y : susp A)
(PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) : P y :=
susp.rec PN PS Pm y
theorem rec_merid {P : susp A → Type} (PN : P north) (PS : P south)
(Pm : Π(a : A), PN =[merid a] PS) (a : A)
: apdo (susp.rec PN PS Pm) (merid a) = Pm a :=
!rec_glue
protected definition elim {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS)
(x : susp A) : P :=
susp.rec PN PS (λa, pathover_of_eq (Pm a)) x
protected definition elim_on [reducible] {P : Type} (x : susp A)
(PN : P) (PS : P) (Pm : A → PN = PS) : P :=
susp.elim PN PS Pm x
theorem elim_merid {P : Type} {PN PS : P} (Pm : A → PN = PS) (a : A)
: ap (susp.elim PN PS Pm) (merid a) = Pm a :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (merid a)),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑susp.elim,rec_merid],
end
protected definition elim_type (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
(x : susp A) : Type :=
susp.elim PN PS (λa, ua (Pm a)) x
protected definition elim_type_on [reducible] (x : susp A)
(PN : Type) (PS : Type) (Pm : A → PN ≃ PS) : Type :=
susp.elim_type PN PS Pm x
theorem elim_type_merid (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
(a : A) : transport (susp.elim_type PN PS Pm) (merid a) = Pm a :=
by rewrite [tr_eq_cast_ap_fn,↑susp.elim_type,elim_merid];apply cast_ua_fn
end susp
attribute susp.north susp.south [constructor]
attribute susp.rec susp.elim [unfold 6] [recursor 6]
attribute susp.elim_type [unfold 5]
attribute susp.rec_on susp.elim_on [unfold 3]
attribute susp.elim_type_on [unfold 2]
namespace susp
open pointed
variables {X Y Z : Pointed}
definition pointed_susp [instance] [constructor] (X : Type) : pointed (susp X) :=
pointed.mk north
definition Susp [constructor] (X : Type) : Pointed :=
pointed.mk' (susp X)
definition Susp_functor (f : X →* Y) : Susp X →* Susp Y :=
begin
fconstructor,
{ intro x, induction x,
apply north,
apply south,
exact merid (f a)},
{ reflexivity}
end
definition Susp_functor_compose (g : Y →* Z) (f : X →* Y)
: Susp_functor (g ∘* f) ~* Susp_functor g ∘* Susp_functor f :=
begin
fconstructor,
{ intro a, induction a,
{ reflexivity},
{ reflexivity},
{ apply pathover_eq, apply hdeg_square,
rewrite [▸*,ap_compose' _ (Susp_functor f),↑Susp_functor,+elim_merid]}},
{ reflexivity}
end
-- adjunction from Coq-HoTT
definition loop_susp_unit [constructor] (X : Pointed) : X →* Ω(Susp X) :=
begin
fconstructor,
{ intro x, exact merid x ⬝ (merid pt)⁻¹},
{ apply con.right_inv},
end
definition loop_susp_unit_natural (f : X →* Y)
: loop_susp_unit Y ∘* f ~* ap1 (Susp_functor f) ∘* loop_susp_unit X :=
begin
induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf,
fconstructor,
{ intro x', esimp [Susp_functor], symmetry,
exact
!idp_con ⬝
(!ap_con ⬝
whisker_left _ !ap_inv) ⬝
(!elim_merid ◾ (inverse2 !elim_merid))
},
{ rewrite [▸*,idp_con (con.right_inv _)],
apply inv_con_eq_of_eq_con,
refine _ ⬝ !con.assoc',
rewrite inverse2_right_inv,
refine _ ⬝ !con.assoc',
rewrite [ap_con_right_inv,↑Susp_functor,idp_con_idp,-ap_compose]},
end
definition loop_susp_counit [constructor] (X : Pointed) : Susp (Ω X) →* X :=
begin
fconstructor,
{ intro x, induction x, exact pt, exact pt, exact a},
{ reflexivity},
end
definition loop_susp_counit_natural (f : X →* Y)
: f ∘* loop_susp_counit X ~* loop_susp_counit Y ∘* (Susp_functor (ap1 f)) :=
begin
induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf,
fconstructor,
{ intro x', induction x' with p,
{ reflexivity},
{ reflexivity},
{ esimp, apply pathover_eq, apply hdeg_square,
xrewrite [ap_compose f,ap_compose (susp.elim (f x) (f x) (λ (a : f x = f x), a)),▸*,
+elim_merid,▸*,idp_con]}},
{ reflexivity}
end
definition loop_susp_counit_unit (X : Pointed)
: ap1 (loop_susp_counit X) ∘* loop_susp_unit (Ω X) ~* pid (Ω X) :=
begin
induction X with X x, fconstructor,
{ intro p, esimp,
refine !idp_con ⬝
(!ap_con ⬝
whisker_left _ !ap_inv) ⬝
(!elim_merid ◾ inverse2 !elim_merid)},
{ rewrite [▸*,inverse2_right_inv (elim_merid function.id idp)],
refine !con.assoc ⬝ _,
xrewrite [ap_con_right_inv (susp.elim x x (λa, a)) (merid idp),idp_con_idp,-ap_compose]}
end
definition loop_susp_unit_counit (X : Pointed)
: loop_susp_counit (Susp X) ∘* Susp_functor (loop_susp_unit X) ~* pid (Susp X) :=
begin
induction X with X x, fconstructor,
{ intro x', induction x',
{ reflexivity},
{ exact merid pt},
{ apply pathover_eq,
xrewrite [▸*, ap_id, ap_compose (susp.elim north north (λa, a)), +elim_merid,▸*],
apply square_of_eq, exact !idp_con ⬝ !inv_con_cancel_right⁻¹}},
{ reflexivity}
end
definition susp_adjoint_loop (X Y : Pointed) : map₊ (pointed.mk' (susp X)) Y ≃ map₊ X (Ω Y) :=
begin
fapply equiv.MK,
{ intro f, exact ap1 f ∘* loop_susp_unit X},
{ intro g, exact loop_susp_counit Y ∘* Susp_functor g},
{ intro g, apply eq_of_phomotopy, esimp,
refine !pwhisker_right !ap1_compose ⬝* _,
refine !passoc ⬝* _,
refine !pwhisker_left !loop_susp_unit_natural⁻¹* ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine !pwhisker_right !loop_susp_counit_unit ⬝* _,
apply pid_comp},
{ intro f, apply eq_of_phomotopy, esimp,
refine !pwhisker_left !Susp_functor_compose ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine !pwhisker_right !loop_susp_counit_natural⁻¹* ⬝* _,
refine !passoc ⬝* _,
refine !pwhisker_left !loop_susp_unit_counit ⬝* _,
apply comp_pid},
end
definition susp_adjoint_loop_nat_right (f : Susp X →* Y) (g : Y →* Z)
: susp_adjoint_loop X Z (g ∘* f) ~* ap1 g ∘* susp_adjoint_loop X Y f :=
begin
esimp [susp_adjoint_loop],
refine _ ⬝* !passoc,
apply pwhisker_right,
apply ap1_compose
end
definition susp_adjoint_loop_nat_left (f : Y →* Ω Z) (g : X →* Y)
: (susp_adjoint_loop X Z)⁻¹ (f ∘* g) ~* (susp_adjoint_loop Y Z)⁻¹ f ∘* Susp_functor g :=
begin
esimp [susp_adjoint_loop],
refine _ ⬝* !passoc⁻¹*,
apply pwhisker_left,
apply Susp_functor_compose
end
end susp