2014-01-05 16:52:46 +00:00
|
|
|
-- Annotating lemmas
|
2013-09-06 17:06:26 +00:00
|
|
|
|
|
|
|
Theorem simple (p q r : Bool) : (p ⇒ q) ∧ (q ⇒ r) ⇒ p ⇒ r :=
|
|
|
|
Discharge (λ H_pq_qr, Discharge (λ H_p,
|
|
|
|
let P_pq : (p ⇒ q) := Conjunct1 H_pq_qr,
|
|
|
|
P_qr : (q ⇒ r) := Conjunct2 H_pq_qr,
|
|
|
|
P_q : q := MP P_pq H_p
|
|
|
|
in MP P_qr P_q))
|
|
|
|
|
|
|
|
Show Environment 1
|