lean2/tests/lean/scope.lean.expected.out

33 lines
959 B
Text
Raw Normal View History

Set: pp::colors
Set: pp::unicode
Assumed: A
Assumed: B
Assumed: f
Defined: g
Assumed: h
Assumed: hinv
Assumed: Inv
Assumed: H1
Proved: f_eq_g
Proved: Inj
Definition g (A : Type) (f : A → A → A) (x y : A) : A := f y x
Theorem f_eq_g (A : Type) (f : A → A → A) (H1 : Π x y : A, (f x y) = (f y x)) : f = (g A f) :=
Abst (λ x : A,
Abst (λ y : A,
let L1 : (f x y) = (f y x) := H1 x y,
L2 : (f y x) = (g A f x y) := Refl (g A f x y)
in Trans L1 L2))
Theorem Inj (A B : Type)
(h : A → B)
(hinv : B → A)
(Inv : Π x : A, (hinv (h x)) = x)
(x y : A)
(H : (h x) = (h y)) : x = y :=
let L1 : (hinv (h x)) = (hinv (h y)) := Congr2 hinv H,
L2 : (hinv (h x)) = x := Inv x,
L3 : (hinv (h y)) = y := Inv y,
L4 : x = (hinv (h x)) := Symm L2,
L5 : x = (hinv (h y)) := Trans L4 L1
in Trans L5 L3
10