2014-09-09 22:04:44 +00:00
|
|
|
|
import logic
|
|
|
|
|
open decidable
|
|
|
|
|
|
|
|
|
|
abbreviation decidable_bin_rel {A : Type} (R : A → A → Prop) := Πx y, decidable (R x y)
|
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
parameter {A : Type}
|
|
|
|
|
parameter (R : A → A → Prop)
|
|
|
|
|
|
|
|
|
|
theorem tst1 (H : Πx y, decidable (R x y)) (a b c : A) : decidable (R a b ∧ R b a)
|
|
|
|
|
|
2014-09-09 23:07:07 +00:00
|
|
|
|
theorem tst2 (H : decidable_bin_rel R) (a b c : A) : decidable (R a b ∧ R b a ∨ R b b) :=
|
|
|
|
|
_
|
2014-09-09 22:04:44 +00:00
|
|
|
|
end
|