2015-02-22 17:39:27 +00:00
|
|
|
open is_trunc
|
2015-02-07 00:14:03 +00:00
|
|
|
--structure is_contr [class] (A : Type) : Type
|
|
|
|
|
2015-04-22 02:33:21 +00:00
|
|
|
section
|
2015-02-07 00:14:03 +00:00
|
|
|
parameters {P : Π(A : Type), A → Type}
|
|
|
|
|
|
|
|
definition my_contr {A : Type} [H : is_contr A] (a : A) : P A a := sorry
|
|
|
|
|
|
|
|
definition foo2
|
|
|
|
(A : Type)
|
|
|
|
(B : A → Type)
|
|
|
|
(a : A)
|
|
|
|
(x : B a)
|
|
|
|
(H : Π (a : A), is_contr (B a)) --(H : is_contr (B a))
|
|
|
|
: P (B a) x :=
|
|
|
|
by apply my_contr
|
|
|
|
end
|