2015-04-29 17:15:13 +00:00
|
|
|
import algebra.group algebra.category
|
2015-02-23 23:17:05 +00:00
|
|
|
|
2015-05-07 23:20:20 +00:00
|
|
|
open eq sigma unit category algebra equiv
|
2015-02-23 23:17:05 +00:00
|
|
|
|
|
|
|
set_option pp.implicit true
|
|
|
|
set_option pp.universes true
|
|
|
|
set_option pp.notation false
|
2015-04-22 02:33:21 +00:00
|
|
|
section
|
2015-02-23 23:17:05 +00:00
|
|
|
parameters {D₀ : Type} [C : precategory D₀]
|
|
|
|
{D₂ : Π ⦃a b c d : D₀⦄ (f : hom a b) (g : hom c d)
|
|
|
|
(h : hom a c) (i : hom b d), Type}
|
|
|
|
|
|
|
|
include C
|
|
|
|
structure my_structure1 : Type := (vo1 : D₀) (vo2 : D₀)
|
|
|
|
|
|
|
|
check my_structure1
|
|
|
|
|
|
|
|
definition foo2 : Type := my_structure1
|
|
|
|
|
|
|
|
check foo2
|
|
|
|
end
|
|
|
|
|
|
|
|
definition foo3 : Π {D₀ : Type} [C : precategory D₀], Type :=
|
|
|
|
@my_structure1
|