13 lines
312 B
Text
13 lines
312 B
Text
|
-- HoTT
|
||
|
open is_equiv equiv eq
|
||
|
|
||
|
definition my_rec_on_ua [recursor] {A B : Type} {P : A ≃ B → Type}
|
||
|
(f : A ≃ B) (H : Π(q : A = B), P (equiv_of_eq q)) : P f :=
|
||
|
right_inv equiv_of_eq f ▸ H (ua f)
|
||
|
|
||
|
theorem foo {A B : Type} (f : A ≃ B) : A = B :=
|
||
|
begin
|
||
|
induction f using my_rec_on_ua,
|
||
|
assumption
|
||
|
end
|