37 lines
961 B
Text
37 lines
961 B
Text
|
open prod sigma
|
|||
|
|
|||
|
theorem tst2 (A B C D : Type) : (A × B) × (C × D) → C × B × A :=
|
|||
|
assume p : (A × B) × (C × D),
|
|||
|
obtain [a b] [c d], from p,
|
|||
|
(c, (b, a))
|
|||
|
|
|||
|
theorem tst22 (A B C D : Type) : (A × B) × (C × D) → C × B × A :=
|
|||
|
assume p,
|
|||
|
obtain [a b] [c d], from p,
|
|||
|
(c, (b, a))
|
|||
|
|
|||
|
theorem tst3 (A B C D : Type) : A × B × C × D → C × B × A :=
|
|||
|
assume p,
|
|||
|
obtain a b c d, from p,
|
|||
|
(c, (b, a))
|
|||
|
|
|||
|
example (p q : nat → nat → Type) : (Σ x y, p x y × q x y × q y x) → Σ x y, p x y :=
|
|||
|
assume ex,
|
|||
|
obtain x y pxy qxy qyx, from ex,
|
|||
|
⟨x, y, pxy⟩
|
|||
|
|
|||
|
example (p : nat → nat → Type): (Σ x, p x x) → (Σ x y, p x y) :=
|
|||
|
assume sig,
|
|||
|
obtain x pxx, from sig,
|
|||
|
⟨x, x, pxx⟩
|
|||
|
|
|||
|
open nat
|
|||
|
definition even (a : nat) := Σ x, a = 2*x
|
|||
|
|
|||
|
example (a b : nat) (H₁ : even a) (H₂ : even b) : even (a+b) :=
|
|||
|
obtain x (Hx : a = 2*x), from H₁,
|
|||
|
obtain y (Hy : b = 2*y), from H₂,
|
|||
|
⟨x+y,
|
|||
|
calc a+b = 2*x + 2*y : by rewrite [Hx, Hy]
|
|||
|
... = 2*(x+y) : sorry⟩
|