theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a :=
H ▸ rfl
theorem congr_arg {A : Type} {B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b :=
H ▸ rfl
theorem congr {A : Type} {B : Type} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) :
f a = g b :=
H1 ▸ H2 ▸ rfl
theorem congr_arg2 {A B C : Type} {a a' : A} {b b' : B} (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' :=
congr (congr_arg f Ha) Hb
theorem congr_arg3 {A B C D : Type} {a a' : A} {b b' : B} {c c' : C} (f : A → B → C → D) (Ha : a = a') (Hb : b = b') (Hc : c = c') : f a b c = f a' b' c' :=
congr (congr_arg2 f Ha Hb) Hc
theorem congr_arg4 {A B C D E : Type} {a a' : A} {b b' : B} {c c' : C} {d d' : D} (f : A → B → C → D → E) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') : f a b c d = f a' b' c' d' :=
congr (congr_arg3 f Ha Hb Hc) Hd
theorem congr_arg5 {A B C D E F : Type} {a a' : A} {b b' : B} {c c' : C} {d d' : D} {e e' : E} (f : A → B → C → D → E → F) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e') : f a b c d e = f a' b' c' d' e' :=
congr (congr_arg4 f Ha Hb Hc Hd) He
theorem congr2 {A B C : Type} {a a' : A} {b b' : B} (f f' : A → B → C) (Hf : f = f') (Ha : a = a') (Hb : b = b') : f a b = f' a' b' :=
Hf ▸ congr_arg2 f Ha Hb
theorem congr3 {A B C D : Type} {a a' : A} {b b' : B} {c c' : C} (f f' : A → B → C → D) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') : f a b c = f' a' b' c' :=
Hf ▸ congr_arg3 f Ha Hb Hc
theorem congr4 {A B C D E : Type} {a a' : A} {b b' : B} {c c' : C} {d d' : D} (f f' : A → B → C → D → E) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') : f a b c d = f' a' b' c' d' :=
Hf ▸ congr_arg4 f Ha Hb Hc Hd
theorem congr5 {A B C D E F : Type} {a a' : A} {b b' : B} {c c' : C} {d d' : D} {e e' : E} (f f' : A → B → C → D → E → F) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e') : f a b c d e = f' a' b' c' d' e' :=