28 lines
510 B
Text
28 lines
510 B
Text
|
import data.nat.basic
|
||
|
open nat
|
||
|
|
||
|
definition iter (f : nat → nat) (n : nat) : nat :=
|
||
|
nat.rec_on n
|
||
|
(f 1)
|
||
|
(λ (n₁ : nat) (r : nat), f r)
|
||
|
|
||
|
definition ack (m : nat) : nat → nat :=
|
||
|
nat.rec_on m
|
||
|
nat.succ
|
||
|
(λ (m₁ : nat) (r : nat → nat), iter r)
|
||
|
|
||
|
theorem ack_0_n (n : nat) : ack 0 n = n + 1 :=
|
||
|
rfl
|
||
|
|
||
|
theorem ack_m_0 (m : nat) : ack (m + 1) 0 = ack m 1 :=
|
||
|
rfl
|
||
|
|
||
|
theorem ack_m_n (m n : nat) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) :=
|
||
|
rfl
|
||
|
|
||
|
example : ack 3 2 = 29 :=
|
||
|
rfl
|
||
|
|
||
|
example : ack 3 3 = 61 :=
|
||
|
rfl
|