lean2/tests/lean/run/is_nil.lean

26 lines
669 B
Text
Raw Normal View History

import logic
open tactic
inductive list (A : Type) : Type :=
| nil {} : list A
| cons : A → list A → list A
namespace list end list open list
open eq
definition is_nil {A : Type} (l : list A) : Prop
:= list.rec true (fun h t r, false) l
theorem is_nil_nil (A : Type) : is_nil (@nil A)
:= of_eq_true (refl true)
theorem cons_ne_nil {A : Type} (a : A) (l : list A) : ¬ cons a l = nil
:= not.intro (assume H : cons a l = nil,
absurd
(calc true = is_nil (@nil A) : refl _
... = is_nil (cons a l) : { symm H }
... = false : refl _)
true_ne_false)
theorem T : is_nil (@nil Prop)
:= by apply is_nil_nil