lean2/tests/lean/run/tut_104.lean

51 lines
1.2 KiB
Text
Raw Normal View History

import data.set
namespace function
section
open set
variables {A B : Type}
set_option pp.beta false
definition bijective (f : A → B) := injective f ∧ surjective f
lemma injective_eq_inj_on_univ₁ (f : A → B) : injective f = inj_on f univ :=
begin
esimp [injective, inj_on, univ, mem],
apply propext,
apply iff.intro,
intro Pl a1 a2,
rewrite *true_imp,
exact Pl a1 a2,
intro Pr a1 a2,
exact Pr trivial trivial
end
lemma injective_eq_inj_on_univ₂ (f : A → B) : injective f = inj_on f univ :=
begin
esimp [injective, inj_on, univ, mem],
apply propext,
apply iff.intro,
intro Pl a1 a2,
rewrite *(propext !true_imp),
exact Pl a1 a2,
intro Pr a1 a2,
exact Pr trivial trivial
end
lemma injective_eq_inj_on_univ₃ (f : A → B) : injective f = inj_on f univ :=
begin
esimp [injective, inj_on, univ, mem],
apply propext,
repeat (apply forall_congr; intros),
rewrite *(propext !true_imp)
end
lemma injective_eq_inj_on_univ₄ (f : A → B) : injective f = inj_on f univ :=
begin
esimp [injective, inj_on, univ, mem],
apply propext,
repeat (apply forall_congr; intros),
rewrite *true_imp
end
end
end function