2015-01-08 20:12:30 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
|
2015-01-13 16:56:25 +00:00
|
|
|
|
Module: data.nat.comm_semiring
|
|
|
|
|
Author: Jeremy Avigad
|
2015-01-08 20:12:30 +00:00
|
|
|
|
|
2015-01-13 16:56:25 +00:00
|
|
|
|
ℕ is a comm_semiring.
|
2015-01-08 20:12:30 +00:00
|
|
|
|
-/
|
|
|
|
|
import data.nat.basic algebra.binary algebra.ring
|
|
|
|
|
open binary
|
|
|
|
|
|
|
|
|
|
namespace nat
|
|
|
|
|
section
|
|
|
|
|
open [classes] algebra
|
|
|
|
|
|
2015-01-26 17:01:19 +00:00
|
|
|
|
protected definition comm_semiring [instance] [reducible] : algebra.comm_semiring nat :=
|
2015-01-08 20:12:30 +00:00
|
|
|
|
algebra.comm_semiring.mk add add.assoc zero zero_add add_zero add.comm
|
|
|
|
|
mul mul.assoc (succ zero) one_mul mul_one mul.left_distrib mul.right_distrib
|
|
|
|
|
zero_mul mul_zero (ne.symm (succ_ne_zero zero)) mul.comm
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
section port_algebra
|
|
|
|
|
theorem mul.left_comm : ∀a b c : ℕ, a * (b * c) = b * (a * c) := algebra.mul.left_comm
|
|
|
|
|
theorem mul.right_comm : ∀a b c : ℕ, (a * b) * c = (a * c) * b := algebra.mul.right_comm
|
|
|
|
|
|
|
|
|
|
definition dvd (a b : ℕ) : Prop := algebra.dvd a b
|
|
|
|
|
infix `|` := dvd
|
|
|
|
|
theorem dvd.intro : ∀{a b c : ℕ} (H : a * b = c), a | c := @algebra.dvd.intro _ _
|
|
|
|
|
theorem dvd.ex : ∀{a b : ℕ} (H : a | b), ∃c, a * c = b := @algebra.dvd.ex _ _
|
|
|
|
|
theorem dvd.elim : ∀{P : Prop} {a b : ℕ} (H₁ : a | b) (H₂ : ∀c, a * c = b → P), P :=
|
|
|
|
|
@algebra.dvd.elim _ _
|
|
|
|
|
theorem dvd.refl : ∀a : ℕ, a | a := algebra.dvd.refl
|
|
|
|
|
theorem dvd.trans : ∀{a b c : ℕ} (H₁ : a | b) (H₂ : b | c), a | c := @algebra.dvd.trans _ _
|
|
|
|
|
theorem eq_zero_of_zero_dvd : ∀{a : ℕ} (H : 0 | a), a = 0 := @algebra.eq_zero_of_zero_dvd _ _
|
|
|
|
|
theorem dvd_zero : ∀a : ℕ, a | 0 := algebra.dvd_zero
|
|
|
|
|
theorem one_dvd : ∀a : ℕ, 1 | a := algebra.one_dvd
|
|
|
|
|
theorem dvd_mul_right : ∀a b : ℕ, a | a * b := algebra.dvd_mul_right
|
|
|
|
|
theorem dvd_mul_left : ∀a b : ℕ, a | b * a := algebra.dvd_mul_left
|
|
|
|
|
theorem dvd_mul_of_dvd_left : ∀{a b : ℕ} (H : a | b) (c : ℕ), a | b * c :=
|
|
|
|
|
@algebra.dvd_mul_of_dvd_left _ _
|
|
|
|
|
theorem dvd_mul_of_dvd_right : ∀{a b : ℕ} (H : a | b) (c : ℕ), a | c * b :=
|
|
|
|
|
@algebra.dvd_mul_of_dvd_right _ _
|
|
|
|
|
theorem mul_dvd_mul : ∀{a b c d : ℕ}, a | b → c | d → a * c | b * d :=
|
|
|
|
|
@algebra.mul_dvd_mul _ _
|
|
|
|
|
theorem dvd_of_mul_right_dvd : ∀{a b c : ℕ}, a * b | c → a | c :=
|
|
|
|
|
@algebra.dvd_of_mul_right_dvd _ _
|
|
|
|
|
theorem dvd_of_mul_left_dvd : ∀{a b c : ℕ}, a * b | c → b | c :=
|
|
|
|
|
@algebra.dvd_of_mul_left_dvd _ _
|
|
|
|
|
theorem dvd_add : ∀{a b c : ℕ}, a | b → a | c → a | b + c := @algebra.dvd_add _ _
|
|
|
|
|
end port_algebra
|
|
|
|
|
end nat
|