2015-07-06 15:05:01 -07:00
|
|
|
--
|
2015-04-29 12:16:37 -07:00
|
|
|
|
|
|
|
open function
|
|
|
|
|
|
|
|
structure bijection (A : Type) :=
|
|
|
|
(func finv : A → A)
|
|
|
|
(linv : finv ∘ func = id)
|
|
|
|
(rinv : func ∘ finv = id)
|
|
|
|
|
|
|
|
attribute bijection.func [coercion]
|
|
|
|
|
|
|
|
namespace bijection
|
|
|
|
variable {A : Type}
|
|
|
|
|
|
|
|
definition compose (f g : bijection A) : bijection A :=
|
|
|
|
bijection.mk
|
|
|
|
(f ∘ g)
|
|
|
|
(finv g ∘ finv f)
|
|
|
|
(by rewrite [compose.assoc, -{finv f ∘ _}compose.assoc, linv f, compose.left_id, linv g])
|
|
|
|
(by rewrite [-compose.assoc, {_ ∘ finv g}compose.assoc, rinv g, compose.right_id, rinv f])
|
|
|
|
|
|
|
|
infixr `∘b`:100 := compose
|
|
|
|
|
|
|
|
lemma compose.assoc (f g h : bijection A) : (f ∘b g) ∘b h = f ∘b (g ∘b h) := rfl
|
|
|
|
|
|
|
|
definition id : bijection A :=
|
|
|
|
bijection.mk id id (compose.left_id id) (compose.left_id id)
|
|
|
|
|
|
|
|
lemma id.left_id (f : bijection A) : id ∘b f = f :=
|
|
|
|
bijection.rec_on f (λx x x x, rfl)
|
|
|
|
|
|
|
|
lemma id.right_id (f : bijection A) : f ∘b id = f :=
|
|
|
|
bijection.rec_on f (λx x x x, rfl)
|
|
|
|
|
|
|
|
definition inv (f : bijection A) : bijection A :=
|
|
|
|
bijection.mk
|
|
|
|
(finv f)
|
|
|
|
(func f)
|
|
|
|
(rinv f)
|
|
|
|
(linv f)
|
|
|
|
|
|
|
|
lemma inv.linv (f : bijection A) : inv f ∘b f = id :=
|
|
|
|
bijection.rec_on f (λfunc finv linv rinv, by rewrite [↑inv, ↑compose, linv])
|
|
|
|
end bijection
|