lean2/hott/homotopy/interval.hlean

100 lines
3.3 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the interval
-/
import .susp types.eq types.prod cubical.square
open eq susp unit equiv is_trunc nat prod
definition interval : Type₀ := susp unit
namespace interval
definition zero : interval := north
definition one : interval := south
definition seg : zero = one := merid star
protected definition rec {P : interval → Type} (P0 : P zero) (P1 : P one)
(Ps : P0 =[seg] P1) (x : interval) : P x :=
begin
fapply susp.rec_on x,
{ exact P0},
{ exact P1},
{ intro x, cases x, exact Ps}
end
protected definition rec_on [reducible] {P : interval → Type} (x : interval)
(P0 : P zero) (P1 : P one) (Ps : P0 =[seg] P1) : P x :=
interval.rec P0 P1 Ps x
theorem rec_seg {P : interval → Type} (P0 : P zero) (P1 : P one) (Ps : P0 =[seg] P1)
: apdo (interval.rec P0 P1 Ps) seg = Ps :=
!rec_merid
protected definition elim {P : Type} (P0 P1 : P) (Ps : P0 = P1) (x : interval) : P :=
interval.rec P0 P1 (pathover_of_eq Ps) x
protected definition elim_on [reducible] {P : Type} (x : interval) (P0 P1 : P)
(Ps : P0 = P1) : P :=
interval.elim P0 P1 Ps x
theorem elim_seg {P : Type} (P0 P1 : P) (Ps : P0 = P1)
: ap (interval.elim P0 P1 Ps) seg = Ps :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant seg),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑interval.elim,rec_seg],
end
protected definition elim_type (P0 P1 : Type) (Ps : P0 ≃ P1) (x : interval) : Type :=
interval.elim P0 P1 (ua Ps) x
protected definition elim_type_on [reducible] (x : interval) (P0 P1 : Type) (Ps : P0 ≃ P1)
: Type :=
interval.elim_type P0 P1 Ps x
theorem elim_type_seg (P0 P1 : Type) (Ps : P0 ≃ P1)
: transport (interval.elim_type P0 P1 Ps) seg = Ps :=
by rewrite [tr_eq_cast_ap_fn,↑interval.elim_type,elim_seg];apply cast_ua_fn
definition is_contr_interval [instance] [priority 900] : is_contr interval :=
is_contr.mk zero (λx, interval.rec_on x idp seg !pathover_eq_r_idp)
open is_equiv equiv
definition naive_funext_of_interval : naive_funext :=
λA P f g p, ap (λ(i : interval) (x : A), interval.elim_on i (f x) (g x) (p x)) seg
end interval open interval
definition cube : → Type₀
| cube 0 := unit
| cube (succ n) := cube n × interval
abbreviation square := cube (succ (succ nat.zero))
definition cube_one_equiv_interval : cube 1 ≃ interval :=
!prod_comm_equiv ⬝e !prod_unit_equiv
definition prod_square {A B : Type} {a a' : A} {b b' : B} (p : a = a') (q : b = b')
: square (pair_eq p idp) (pair_eq p idp) (pair_eq idp q) (pair_eq idp q) :=
by cases p; cases q; exact ids
namespace square
definition tl : square := (star, zero, zero)
definition tr : square := (star, one, zero)
definition bl : square := (star, zero, one )
definition br : square := (star, one, one )
-- s stands for "square" in the following definitions
definition st : tl = tr := pair_eq (pair_eq idp seg) idp
definition sb : bl = br := pair_eq (pair_eq idp seg) idp
definition sl : tl = bl := pair_eq idp seg
definition sr : tr = br := pair_eq idp seg
definition sfill : square st sb sl sr := !prod_square
definition fill : st ⬝ sr = sl ⬝ sb := !square_equiv_eq sfill
end square